AI Medical Compendium Topic:
Prognosis

Clear Filters Showing 1041 to 1050 of 3228 articles

Deep learning-based multi-model prediction for disease-free survival status of patients with clear cell renal cell carcinoma after surgery: a multicenter cohort study.

International journal of surgery (London, England)
BACKGROUND: Although separate analysis of individual factor can somewhat improve the prognostic performance, integration of multimodal information into a single signature is necessary to stratify patients with clear cell renal cell carcinoma (ccRCC) ...

A CT-based deep learning model predicts overall survival in patients with muscle invasive bladder cancer after radical cystectomy: a multicenter retrospective cohort study.

International journal of surgery (London, England)
BACKGROUND: Muscle invasive bladder cancer (MIBC) has a poor prognosis even after radical cystectomy (RC). Postoperative survival stratification based on radiomics and deep learning (DL) algorithms may be useful for treatment decision-making and foll...

A computed tomography-based multitask deep learning model for predicting tumour stroma ratio and treatment outcomes in patients with colorectal cancer: a multicentre cohort study.

International journal of surgery (London, England)
BACKGROUND: Tumour-stroma interactions, as indicated by tumour-stroma ratio (TSR), offer valuable prognostic stratification information. Current histological assessment of TSR is limited by tissue accessibility and spatial heterogeneity. The authors ...

Enhancing breast cancer outcomes with machine learning-driven glutamine metabolic reprogramming signature.

Frontiers in immunology
BACKGROUND: This study aims to identify precise biomarkers for breast cancer to improve patient outcomes, addressing the limitations of traditional staging in predicting treatment responses.

Identification of prognostic signatures in remnant gastric cancer through an interpretable risk model based on machine learning: a multicenter cohort study.

BMC cancer
OBJECTIVE: The purpose of this study was to develop an individual survival prediction model based on multiple machine learning (ML) algorithms to predict survival probability for remnant gastric cancer (RGC).

Analysis of Bladder Cancer Staging Prediction Using Deep Residual Neural Network, Radiomics, and RNA-Seq from High-Definition CT Images.

Genetics research
Bladder cancer has recently seen an alarming increase in global diagnoses, ascending as a predominant cause of cancer-related mortalities. Given this pressing scenario, there is a burgeoning need to identify effective biomarkers for both the diagnosi...

A deep learning-based 3D Prompt-nnUnet model for automatic segmentation in brachytherapy of postoperative endometrial carcinoma.

Journal of applied clinical medical physics
PURPOSE: To create and evaluate a three-dimensional (3D) Prompt-nnUnet module that utilizes the prompts-based model combined with 3D nnUnet for producing the rapid and consistent autosegmentation of high-risk clinical target volume (HR CTV) and organ...

Deep learning approach for cardiovascular disease risk stratification and survival analysis on a Canadian cohort.

The international journal of cardiovascular imaging
The quantification of carotid plaque has been routinely used to predict cardiovascular risk in cardiovascular disease (CVD) and coronary artery disease (CAD). To determine how well carotid plaque features predict the likelihood of CAD and cardiovascu...

Predicting postoperative rehemorrhage in hypertensive intracerebral hemorrhage using noncontrast CT radiomics and clinical data with an interpretable machine learning approach.

Scientific reports
In hypertensive intracerebral hemorrhage (HICH) patients, while emergency surgeries effectively reduce intracranial pressure and hematoma volume, their significant risk of causing postoperative rehemorrhage necessitates early detection and management...