AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Prognosis

Showing 191 to 200 of 3140 articles

Clear Filters

Predicting the efficacy of neoadjuvant chemotherapy in breast cancer patients based on ultrasound longitudinal temporal depth network fusion model.

Breast cancer research : BCR
OBJECTIVE: The aim of this study was to develop and validate a deep learning radiomics (DLR) model based on longitudinal ultrasound data and clinical features to predict pathologic complete response (pCR) after neoadjuvant chemotherapy (NAC) in breas...

Machine Learning-Based Mortality Prediction for Acute Gastrointestinal Bleeding Patients Admitted to Intensive Care Unit.

Current medical science
OBJECTIVE: The study aimed to develop machine learning (ML) models to predict the mortality of patients with acute gastrointestinal bleeding (AGIB) in the intensive care unit (ICU) and compared their prognostic performance with that of Acute Physiolo...

Identification of potential biomarkers for lung cancer using integrated bioinformatics and machine learning approaches.

PloS one
Lung cancer is one of the most common cancer and the leading cause of cancer-related death worldwide. Early detection of lung cancer can help reduce the death rate; therefore, the identification of potential biomarkers is crucial. Thus, this study ai...

Pre-transplant and transplant parameters predict long-term survival after hematopoietic cell transplantation using machine learning.

Transplant immunology
BACKGROUND: Allogeneic hematopoietic stem transplantation (allo-HSCT) constitutes a curative treatment for various hematological malignancies. However, various complications limit the therapeutic efficacy of this approach, increasing the morbidity an...

Using prognostic signatures and machine learning to identify core features associated with response to CDK4/6 inhibitor-based therapy in metastatic breast cancer.

Oncogene
CDK4/6 inhibitors in combination with endocrine therapy are widely used to treat HR+/HER2- metastatic breast cancer leading to improved progression-free survival (PFS) compared to single agent endocrine therapy. Over 300 patients receiving standard-o...

Estimation of Machine Learning-Based Models to Predict Dementia Risk in Patients With Atherosclerotic Cardiovascular Diseases: UK Biobank Study.

JMIR aging
BACKGROUND: The atherosclerotic cardiovascular disease (ASCVD) is associated with dementia. However, the risk factors of dementia in patients with ASCVD remain unclear, necessitating the development of accurate prediction models.

Development of a tertiary lymphoid structure-based prognostic model for breast cancer: integrating single-cell sequencing and machine learning to enhance patient outcomes.

Frontiers in immunology
BACKGROUND: Breast cancer, a highly prevalent global cancer, poses significant challenges, especially in advanced stages. Prognostic models are crucial to enhance patient outcomes. Tertiary lymphoid structures (TLS) within the tumor microenvironment ...

Machine learning-based prediction of distant metastasis risk in invasive ductal carcinoma of the breast.

PloS one
More than 90% of deaths due to breast cancer (BC) are due to metastasis-related complications, with invasive ductal carcinoma (IDC) of the breast being the most common pathologic type of breast cancer and highly susceptible to metastasis to distant o...