AIMC Topic: Protein Interaction Maps

Clear Filters Showing 31 to 40 of 375 articles

Identification of potential biomarkers for lung cancer using integrated bioinformatics and machine learning approaches.

PloS one
Lung cancer is one of the most common cancer and the leading cause of cancer-related death worldwide. Early detection of lung cancer can help reduce the death rate; therefore, the identification of potential biomarkers is crucial. Thus, this study ai...

Identification of Biomarkers for Response to Interferon in Chronic Hepatitis B Based on Bioinformatics Analysis and Machine Learning.

Viral immunology
Interferon (IFN) is a pivotal agent against hepatitis B virus (HBV) in clinic, but there is a lack of accurate biomarkers to predict the response to IFN therapy in patients with chronic hepatitis B (CHB). Our study aimed to investigate potential targ...

Identification of crucial genes for polycystic ovary syndrome and atherosclerosis through comprehensive bioinformatics analysis and machine learning.

International journal of gynaecology and obstetrics: the official organ of the International Federation of Gynaecology and Obstetrics
OBJECTIVE: To identify potential biomarkers in patients with polycystic ovary syndrome (PCOS) and atherosclerosis, and to explore the common pathologic mechanisms between these two diseases in response to the increased risk of cardiovascular diseases...

Identification of benzo(a)pyrene-related toxicological targets and their role in chronic obstructive pulmonary disease pathogenesis: a comprehensive bioinformatics and machine learning approach.

BMC pharmacology & toxicology
BACKGROUND: Chronic obstructive pulmonary disease (COPD) pathogenesis is influenced by environmental factors, including Benzo(a)pyrene (BaP) exposure. This study aims to identify BaP-related toxicological targets and elucidate their roles in COPD dev...

Identification of biomarkers associated with phagocytosis regulatory factors in coronary artery disease using machine learning and network analysis.

Mammalian genome : official journal of the International Mammalian Genome Society
BACKGROUND: Coronary artery disease (CAD) is the leading cause of death worldwide, and aberrant phagocytosis may be involved in its development. Understanding this aspect may provide new avenues for prompt CAD diagnosis.

Combining machine learning with external validation to explore necroptosis and immune response in moyamoya disease.

BMC immunology
Moyamoya disease (MMD) is a rare chronic vascular disease leads to cognitive impairment and stroke with its etiology unknown. The relationship between necroptosis or necroinflammation and MMD pathogenesis was poorly understood. Differentially express...

SEGT-GO: a graph transformer method based on PPI serialization and explanatory artificial intelligence for protein function prediction.

BMC bioinformatics
BACKGROUND: A massive amount of protein sequences have been obtained, but their functions remain challenging to discern. In recent research on protein function prediction, Protein-Protein Interaction (PPI) Networks have played a crucial role. Uncover...

Analysis and validation of programmed cell death genes associated with spinal cord injury progression based on bioinformatics and machine learning.

International immunopharmacology
BACKGROUND: Spinal cord injury (SCI) is a severe condition affecting the central nervous system. It is marked by a high disability rate and potential for death. Research has demonstrated that programmed cell death (PCD) plays a significant role in th...

Utilizing bioinformatics and machine learning to identify CXCR4 gene-related therapeutic targets in diabetic foot ulcers.

Frontiers in endocrinology
BACKGROUND: Diabetic foot ulcers (DFUs) are a serious complication of diabetes mellitus that manifests as chronic, non-healing wounds that have a significant impact on patients quality of life. Identifying key molecular targets associated with DFUs c...