AIMC Topic: Radiomics

Clear Filters Showing 91 to 100 of 614 articles

Diffusion-Weighted Imaging-Based Radiomics Features and Machine Learning Method to Predict the 90-Day Prognosis in Patients With Acute Ischemic Stroke.

The neurologist
OBJECTIVES: The evaluation of the prognosis of patients with acute ischemic stroke (AIS) is of great significance in clinical practice. We aim to evaluate the feasibility and effectiveness of diffusion-weighted imaging (DWI) image-based radiomics fea...

Artificial intelligence-assisted precise preoperative prediction of lateral cervical lymph nodes metastasis in papillary thyroid carcinoma via a clinical-CT radiomic combined model.

International journal of surgery (London, England)
OBJECTIVES: This study aimed to develop an artificial intelligence-assisted model for the preoperative prediction of lateral cervical lymph node metastasis (LCLNM) in papillary thyroid carcinoma (PTC) using computed tomography (CT) radiomics, providi...

Preoperative diagnosis of meningioma sinus invasion based on MRI radiomics and deep learning: a multicenter study.

Cancer imaging : the official publication of the International Cancer Imaging Society
OBJECTIVE: Exploring the construction of a fusion model that combines radiomics and deep learning (DL) features is of great significance for the precise preoperative diagnosis of meningioma sinus invasion.

Machine learning-driven ultrasound radiomics for assessing axillary lymph node burden in breast cancer.

Frontiers in endocrinology
OBJECTIVE: This study explores the value of combining intratumoral and peritumoral radiomics features from ultrasound imaging with clinical characteristics to assess axillary lymph node burden in breast cancer patients.

Multi-parametric MRI Habitat Radiomics Based on Interpretable Machine Learning for Preoperative Assessment of Microsatellite Instability in Rectal Cancer.

Academic radiology
RATIONALE AND OBJECTIVES: This study constructed an interpretable machine learning model based on multi-parameter MRI sub-region habitat radiomics and clinicopathological features, aiming to preoperatively evaluate the microsatellite instability (MSI...

Non-invasive classification of non-neoplastic and neoplastic gallbladder polyps based on clinical imaging and ultrasound radiomics features: An interpretable machine learning model.

European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology
BACKGROUND: Gallbladder (GB) adenomas, precancerous lesions for gallbladder carcinoma (GBC), lack reliable non-invasive tools for preoperative differentiation of neoplastic polyps from cholesterol polyps. This study aimed to evaluate an interpretable...

Decoding breast cancer imaging trends: the role of AI and radiomics through bibliometric insights.

Breast cancer research : BCR
BACKGROUND: Radiomics and AI have been widely used in breast cancer imaging, but a comprehensive systematic analysis is lacking. Therefore, this study aims to conduct a bibliometrics analysis in this field to discuss its research status and frontier ...

Preoperative clinical radiomics model based on deep learning in prognostic assessment of patients with gallbladder carcinoma.

BMC cancer
OBJECTIVE: We aimed to develop a preoperative clinical radiomics survival prediction model based on the radiomics features via deep learning to provide a reference basis for preoperative assessment and treatment decisions for patients with gallbladde...

Detecting severe coronary artery stenosis in T2DM patients with NAFLD using cardiac fat radiomics-based machine learning.

Scientific reports
To analyze radiomics features of cardiac adipose tissue in individuals with type 2 diabetes (T2DM) and non-alcoholic fatty liver disease (NAFLD), integrating relevant clinical indicators, and employing machine learning techniques to construct a preci...

Deep transfer learning radiomics for distinguishing sinonasal malignancies: a preliminary MRI study.

Future oncology (London, England)
PURPOSE: This study aimed to assess the diagnostic accuracy of combining MRI hand-crafted (HC) radiomics features with deep transfer learning (DTL) in identifying sinonasal squamous cell carcinoma (SCC), adenoid cystic carcinoma (ACC), and non-Hodgki...