AIMC Topic: Radiomics

Clear Filters Showing 121 to 130 of 618 articles

Comparative analysis of machine learning models for predicting pathological complete response to neoadjuvant chemotherapy in breast cancer: An MRI radiomics approach.

Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB)
PURPOSE: The aim of this work is to compare different machine learning models for predicting pathological complete response (pCR) to neoadjuvant chemotherapy (NAC) in breast cancer using radiomics features from dynamic contrast-enhanced magnetic reso...

Radiomics integration based on intratumoral and peritumoral computed tomography improves the diagnostic efficiency of invasiveness in patients with pure ground-glass nodules: a machine learning, cross-sectional, bicentric study.

Journal of cardiothoracic surgery
BACKGROUND: Radiomics has shown promise in the diagnosis and prognosis of lung cancer. Here, we investigated the performance of computed tomography-based radiomic features, extracted from gross tumor volume (GTV), peritumoral volume (PTV), and GTV + ...

Deep Learning Radiomics for Survival Prediction in Non-Small-Cell Lung Cancer Patients from CT Images.

Journal of medical systems
This study aims to apply a multi-modal approach of the deep learning method for survival prediction in patients with non-small-cell lung cancer (NSCLC) using CT-based radiomics. We utilized two public data sets from the Cancer Imaging Archive (TCIA) ...

Prediction of High-risk Capsule Characteristics for Recurrence of Pleomorphic Adenoma in the Parotid Gland Based on Habitat Imaging and Peritumoral Radiomics: A Two-center Study.

Academic radiology
RATIONALE AND OBJECTIVES: This study aims to develop and validate an ultrasoundbased habitat imaging and peritumoral radiomics model for predicting high-risk capsule characteristics for recurrence of pleomorphic adenoma (PA) of the parotid gland whil...

Ultrasonic-Based Radiomics Signature With Machine Learning for Differentiating Prognostic Subsets of Pediatric Peripheral Neuroblastic Tumors: A Retrospective Study.

Ultrasound in medicine & biology
OBJECTIVE: To construct and select a better model based on ultrasonic-based radiomics features and clinical characteristics for prognostic subsets of pediatric neuroblastic tumors.

A Hybrid Machine Learning CT-Based Radiomics Nomogram for Predicting Cancer-Specific Survival in Curatively Resected Colorectal Cancer.

Academic radiology
RATIONALE AND OBJECTIVES: To develop and validate a computed tomography-based radiomics nomogram for cancer-specific survival (CSS) prediction in curatively resected colorectal cancer (CRC), and its performance was compared with the American Joint Co...

Integration of radiomic and deep features to reliably differentiate benign renal lesions from renal cell carcinoma.

European journal of radiology
PURPOSE: Accurate differentiation of benign renal lesions from renal cell carcinoma (RCC) is crucial for optimized management, particularly for small renal lesions (≤4 cm in diameter). This study aimed to integrate clinical data, radiomic features, a...

Machine learning assisted radiomics in predicting postoperative occurrence of deep venous thrombosis in patients with gastric cancer.

BMC cancer
BACKGROUND: Gastric cancer patients are prone to lower extremity deep vein thrombosis (DVT) after surgery, which is an important cause of death in postoperative patients. Therefore, it is particularly important to find a suitable way to predict the r...

Integrating manual annotation with deep transfer learning and radiomics for vertebral fracture analysis.

BMC medical imaging
BACKGROUND: Vertebral compression fractures (VCFs) are prevalent in the elderly, often caused by osteoporosis or trauma. Differentiating acute from chronic VCFs is vital for treatment planning, but MRI, the gold standard, is inaccessible for some. Ho...

A comparison of different machine learning classifiers in predicting xerostomia and sticky saliva due to head and neck radiotherapy using a multi-objective, multimodal radiomics model.

Biomedical physics & engineering express
. Although radiotherapy techniques are a primary treatment for head and neck cancer (HNC), they are still associated with substantial toxicity and side effects. Machine learning (ML) based radiomics models for predicting toxicity mostly rely on featu...