AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Radiomics

Showing 31 to 40 of 518 articles

Clear Filters

A radiomics model combining machine learning and neural networks for high-accuracy prediction of cervical lymph node metastasis on ultrasound of head and neck squamous cell carcinoma.

Oral surgery, oral medicine, oral pathology and oral radiology
OBJECTIVE: This study aimed to develop an ultrasound image-based radiomics model for diagnosing cervical lymph node (LN) metastasis in patients with head and neck squamous cell carcinoma (HNSCC) that shows higher accuracy than previous models.

Machine learning-based radiomics using MRI to differentiate early-stage Duchenne and Becker muscular dystrophy in children.

BMC musculoskeletal disorders
OBJECTIVES: Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) present similar symptoms in the early stage, complicating their differentiation. This study aims to develop a classification model using radiomic features from MRI T2-w...

Comparison of MRI and CT based deep learning radiomics analyses and their combination for diagnosing intrahepatic cholangiocarcinoma.

Scientific reports
Intrahepatic cholangiocarcinoma (iCCA) and other subtypes of primary liver cancer (PLC) have overlapping clinical manifestations and radiological characteristics. The objective of this study was to evaluate the efficacy of deep learning (DL) radiomic...

Machine learning prediction model for functional prognosis of acute ischemic stroke based on MRI radiomics of white matter hyperintensities.

BMC medical imaging
OBJECTIVE: The purpose of the current study is to explore the value of a nomogram that integrates clinical factors and MRI white matter hyperintensities (WMH) radiomics features in predicting the prognosis at 90 days for patients with acute ischemic ...

Leveraging Artificial Intelligence and Radiomics for Improved Nasopharyngeal Carcinoma Prognostication.

Cancer medicine
INTRODUCTION: Nasopharyngeal carcinoma (NPC) typically presents as advanced disease due to the lack of significant symptoms in the early stages. Accurate prognostication is therefore challenging as current methods based on anatomical staging often la...

Combining artificial intelligence assisted image segmentation and ultrasound based radiomics for the prediction of carotid plaque stability.

BMC medical imaging
PURPOSE: Utilizing artificial intelligence (AI) technology for the segmentation of plaques on ultrasound images to evaluate the stability of carotid artery plaques and analyze its diagnostic accuracy in differentiating vulnerable plaques from stable ...

Establishment and validation of a ResNet-based radiomics model for predicting prognosis in cervical spinal cord injury patients.

Scientific reports
Cervical spinal cord injury (cSCI) poses a significant challenge due to the unpredictable nature of recovery, which ranges from mild paralysis to severe long-term disability. Accurate prognostic models are crucial for guiding treatment and rehabilita...

Systematic Review of Radiomics and Artificial Intelligence in Intracranial Aneurysm Management.

Journal of neuroimaging : official journal of the American Society of Neuroimaging
Intracranial aneurysms, with an annual incidence of 2%-3%, reflect a rare disease associated with significant mortality and morbidity risks when ruptured. Early detection, risk stratification of high-risk subgroups, and prediction of patient outcomes...

Voxel-level radiomics and deep learning for predicting pathologic complete response in esophageal squamous cell carcinoma after neoadjuvant immunotherapy and chemotherapy.

Journal for immunotherapy of cancer
BACKGROUND: Accurate prediction of pathologic complete response (pCR) following neoadjuvant immunotherapy combined with chemotherapy (nICT) is crucial for tailoring patient care in esophageal squamous cell carcinoma (ESCC). This study aimed to develo...