IMPORTANCE: Under austere prehospital conditions, rapid classification of injured patients for intervention or transport is essential for providing lifesaving care. Discerning which patients need care most urgently further allows for optimal allocati...
IMPORTANCE: Integrating artificial intelligence (AI) technologies into gatekeeping holds significant potential, as it efficiently handles repetitive tasks and can process large amounts of information quickly.
BACKGROUND: Preoperative diagnosis of muscle invasion and American Joint Committee on Cancer (AJCC) stage plays a crucial role in guiding treatment strategies for bladder cancer (BCa). Utilizing quantitative analysis of tumor subregions via CT imagin...
OBJECTIVE: Left atrial thrombus (LAT) poses a significant risk for stroke and other thromboembolic complication in patients with atrial fibrillation (AF). This study aimed to evaluate the incidence and predictors of LAT in patients with paroxysmal AF...
BACKGROUND: Generalisation of artificial intelligence (AI) models to a new setting is challenging. In this study, we seek to understand the robustness of a dermatology (AI) model and whether it generalises from telemedicine cases to a new setting inc...
Thyroid : official journal of the American Thyroid Association
Jun 2, 2025
Artificial intelligence (AI) models have shown promise in predicting malignant thyroid nodules in adults; however, research on deep learning (DL) for pediatric cases is limited. We evaluated the applicability of a DL-based model for assessing thyroi...
BACKGROUND: Accurate preoperative prediction of major pathological response or pathological complete response after neoadjuvant chemo-immunotherapy remains a critical unmet need in resectable non-small-cell lung cancer (NSCLC). Conventional size-base...
PURPOSE: To investigate the image quality of deep learning-reconstructed T2-weighted half-Fourier single-shot turbo spin echo (DL T2 HASTE) and contrast-enhanced T1-weighted volumetric interpolated breath-hold examination (DL T1 VIBE) of magnetic res...
OBJECTIVE: This study aimed to construct a novel model, Multi-Spatial Attention U-Net (MSAU-Net) by incorporating our proposed Multi-Spatial Attention (MSA) block into the U-Net for the automated segmentation of the gallbladder on CT images.
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.