AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Retrospective Studies

Showing 111 to 120 of 8643 articles

Clear Filters

Optimizing prediction of metastasis among colorectal cancer patients using machine learning technology.

BMC gastroenterology
BACKGROUND AND AIM: Colorectal cancer is among the most prevalent and deadliest cancers. Early prediction of metastasis in patients with colorectal cancer is crucial in preventing it from the advanced stages and enhancing the prognosis among these pa...

Daily Automated Prediction of Delirium Risk in Hospitalized Patients: Model Development and Validation.

JMIR medical informatics
BACKGROUND: Delirium is common in hospitalized patients and is correlated with increased morbidity and mortality. Despite this, delirium is underdiagnosed, and many institutions do not have sufficient resources to consistently apply effective screeni...

Development and validation of a predictive machine learning model for postoperative long-term diabetes insipidus following transsphenoidal surgery for sellar lesions.

Clinical neurology and neurosurgery
OBJECTIVE: Diabetes Insipidus (DI) is a common complication that occurs following transsphenoidal surgery for sellar lesions. DI is usually transient but can be permanent in select patients. Prior studies have described preoperative risk factors for ...

Enhanced non-invasive machine learning approach for early colorectal cancer detection: Predictive modeling and validation in a Jordanian cohort.

Computers in biology and medicine
BACKGROUND: Colorectal cancer (CRC) ranks as the third most prevalent cancer worldwide, posing significant public health challenges. Late-stage detection often results in poor treatment outcomes, elevating mortality rates. The economic and psychologi...

A machine learning-based framework for predicting postpartum chronic pain: a retrospective study.

BMC medical informatics and decision making
BACKGROUND: Postpartum chronic pain is prevalent, affecting many women after delivery. Machine learning algorithms have been widely used in predicting postoperative conditions. We investigated the prevalence of and risk factors for postpartum chronic...

Automated machine learning for early prediction of systemic inflammatory response syndrome in acute pancreatitis.

BMC medical informatics and decision making
BACKGROUND: Systemic inflammatory response syndrome (SIRS) is a frequent and serious complication of acute pancreatitis (AP), often associated with increased mortality. This study aims to leverage automated machine learning (AutoML) algorithms to cre...

Machine learning center-specific models show improved IVF live birth predictions over US national registry-based model.

Nature communications
Expanding in vitro fertilization (IVF) access requires improved patient counseling and affordability via cost-success transparency. Clinicians ask how two types of live birth prediction (LBP) models perform: machine learning, center-specific (MLCS) m...

Enhancing Physician-Patient Communication in Oncology Using GPT-4 Through Simplified Radiology Reports: Multicenter Quantitative Study.

Journal of medical Internet research
BACKGROUND: Effective physician-patient communication is essential in clinical practice, especially in oncology, where radiology reports play a crucial role. These reports are often filled with technical jargon, making them challenging for patients t...

Automated opportunistic screening for osteoporosis using deep learning-based automatic segmentation and radiomics on proximal femur images from low-dose abdominal CT.

BMC musculoskeletal disorders
RATIONALE AND OBJECTIVES: To establish an automated osteoporosis detection model based on low-dose abdominal CT (LDCT). This model combined a deep learning-based automatic segmentation of the proximal femur with a radiomics-based bone status classifi...