AIMC Topic: Retrospective Studies

Clear Filters Showing 811 to 820 of 9539 articles

Machine Learning-Driven Modeling to Predict Postdischarge Venous Thromboembolism After Pancreatectomy for Pancreas Cancer.

Annals of surgical oncology
BACKGROUND: Postdischarge venous thromboembolism (pdVTE) is a life-threatening complication following resection for pancreatic cancer (PC). While national guidelines recommend extended chemoprophylaxis for all, adherence is low and ranges from 1.5 to...

T2-weighted imaging of rectal cancer using a 3D fast spin echo sequence with and without deep learning reconstruction: A reader study.

Journal of applied clinical medical physics
PURPOSE: To compare image quality and clinical utility of a T2-weighted (T2W) 3-dimensional (3D) fast spin echo (FSE) sequence using deep learning reconstruction (DLR) versus conventional reconstruction for rectal magnetic resonance imaging (MRI).

Predicting hepatocellular carcinoma survival with artificial intelligence.

Scientific reports
Despite the extensive research on hepatocellular carcinoma (HCC) exploring various treatment strategies, the survival outcomes have remained unsatisfactory. The aim of this research was to evaluate the ability of machine learning (ML) methods in pred...

Artificial intelligence algorithm for preoperative prediction of FIGO stage in ovarian cancer based on clinical features integrated 18F-FDG PET/CT metabolic and radiomics features.

Journal of cancer research and clinical oncology
PURPOSE: The International Federation of Gynecology and Obstetric (FIGO) stage is critical to guiding the treatments of ovarian cancer (OC). We tried to develop a model to predict the FIGO stage of OC through machine learning algorithms with patients...

Robust and generalizable artificial intelligence for multi-organ segmentation in ultra-low-dose total-body PET imaging: a multi-center and cross-tracer study.

European journal of nuclear medicine and molecular imaging
PURPOSE: Positron Emission Tomography (PET) is a powerful molecular imaging tool that visualizes radiotracer distribution to reveal physiological processes. Recent advances in total-body PET have enabled low-dose, CT-free imaging; however, accurate o...

Prediction of adverse pathology in prostate cancer using a multimodal deep learning approach based on [F]PSMA-1007 PET/CT and multiparametric MRI.

European journal of nuclear medicine and molecular imaging
PURPOSE: Accurate prediction of adverse pathology (AP) in prostate cancer (PCa) patients is crucial for formulating effective treatment strategies. This study aims to develop and evaluate a multimodal deep learning model based on [F]PSMA-1007 PET/CT ...

Accuracy of cephalometric landmark identification by artificial intelligence platform versus expert orthodontist in unilateral cleft palate patients: A retrospective study.

International orthodontics
OBJECTIVE: The primary aim of the study was to evaluate the accuracy of automated artificial intelligence (AI) cephalometric landmark identification in cleft patients and compare it to landmarks identified by an expert orthodontist. The secondary obj...