AIMC Topic: Retrospective Studies

Clear Filters Showing 811 to 820 of 9179 articles

Estimation of TP53 mutations for endometrial cancer based on diffusion-weighted imaging deep learning and radiomics features.

BMC cancer
OBJECTIVES: To construct a prediction model based on deep learning (DL) and radiomics features of diffusion weighted imaging (DWI), and clinical variables for evaluating TP53 mutations in endometrial cancer (EC).

Machine learning algorithms for predicting delayed hyponatremia after transsphenoidal surgery for patients with pituitary adenoma.

Scientific reports
This study aimed to develop and validate machine learning (ML) models to predict the occurrence of delayed hyponatremia after transsphenoidal surgery for pituitary adenoma. We retrospectively collected clinical data on patients with pituitary adenoma...

Automated diagnosis and classification of metacarpal and phalangeal fractures using a convolutional neural network: a retrospective data analysis study.

Acta orthopaedica
BACKGROUND AND PURPOSE:  Hand fractures are commonly presented in emergency departments, yet diagnostic errors persist, leading to potential complications. The use of artificial intelligence (AI) in fracture detection has shown promise, but research ...

The effect of renal function on the clinical outcomes and management of patients hospitalized with hyperglycemic crises.

Frontiers in endocrinology
BACKGROUND: The global prevalence of diabetes has been rising rapidly in recent years, leading to an increase in patients experiencing hyperglycemic crises like diabetic ketoacidosis (DKA) and hyperosmolar hyperglycemic state (HHS). Patients with imp...

Early identification of potentially reversible cancer cachexia using explainable machine learning driven by body weight dynamics: a multicenter cohort study.

The American journal of clinical nutrition
BACKGROUND: Cachexia is associated with multiple adverse outcomes in cancer. However, clinical decision-making for oncology patients at the cachexia stage presents significant challenges.

CT-Based Body Composition Measures and Systemic Disease: A Population-Level Analysis Using Artificial Intelligence Tools in Over 100,000 Patients.

AJR. American journal of roentgenology
CT-based abdominal body composition measures have shown associations with important health outcomes. Advances in artificial intelligence (AI) now allow deployment of tools that measure body composition in large patient populations. The purpose of t...

Machine Learning to Detect Cervical Spine Fractures Missed by Radiologists on CT: Analysis Using Seven Award-Winning Models From the 2022 RSNA Cervical Spine Fracture AI Challenge.

AJR. American journal of roentgenology
Available data on radiologists' missed cervical spine fractures are based primarily on studies using human reviewers to identify errors on reevaluation; such studies do not capture the full extent of missed fractures. The purpose of this study was ...

Artificial Intelligence Models May Aid in Predicting Lymph Node Metastasis in Patients with T1 Colorectal Cancer.

Gut and liver
BACKGROUND/AIMS: Inaccurate prediction of lymph node metastasis (LNM) may lead to unnecessary surgery following endoscopic resection of T1 colorectal cancer (CRC). We aimed to validate the usefulness of artificial intelligence (AI) models for predict...