AIMC Topic: Retrospective Studies

Clear Filters Showing 971 to 980 of 9539 articles

Enhanced accuracy and stability in automated intra-pancreatic fat deposition monitoring of type 2 diabetes mellitus using Dixon MRI and deep learning.

Abdominal radiology (New York)
PURPOSE: Intra-pancreatic fat deposition (IPFD) is closely associated with the onset and progression of type 2 diabetes mellitus (T2DM). We aimed to develop an accurate and automated method for assessing IPFD on multi-echo Dixon MRI.

Photoacoustic Imaging with Attention-Guided Deep Learning for Predicting Axillary Lymph Node Status in Breast Cancer.

Academic radiology
RATIONALE AND OBJECTIVES: Preoperative assessment of axillary lymph node (ALN) status is essential for breast cancer management. This study explores the use of photoacoustic (PA) imaging combined with attention-guided deep learning (DL) for precise p...

Deep learning based prediction of depression and anxiety in patients with type 2 diabetes mellitus using regional electronic health records.

International journal of medical informatics
BACKGROUND: Depression and anxiety are prevalent mental health conditions among individuals with type 2 diabetes mellitus (T2DM), who exhibit unique vulnerabilities and etiologies. However, existing approaches fail to fully utilize regional heterogen...

Predicting Postoperative Infection After Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy with Splenectomy.

Annals of surgical oncology
BACKGROUND: Hematologic changes after splenectomy and hyperthermic intraperitoneal chemotherapy (HIPEC) can complicate postoperative assessment of infection. This study aimed to develop a machine-learning model to predict postoperative infection afte...

A multimodal deep learning model for cervical pre-cancers and cancers prediction: Development and internal validation study.

Computers in biology and medicine
BACKGROUND: The current cervical cancer screening and diagnosis have limitations due to their subjectivity and lack of reproducibility. We describe the development of a deep learning (DL)-based diagnostic risk prediction model and evaluate its potent...

Death risk prediction model for patients with non-traumatic intracerebral hemorrhage.

BMC medical informatics and decision making
BACKGROUND: This study aimed to assess the risk of death from non-traumatic intracerebral hemorrhage (ICH) using a machine learning model.

Ensemble machine learning models for lung cancer incidence risk prediction in the elderly: a retrospective longitudinal study.

BMC cancer
BACKGROUND: Identifying high risk factors and predicting lung cancer incidence risk are essential to prevention and intervention of lung cancer for the elderly. We aim to develop lung cancer incidence risk prediction model in the elderly to facilitat...

Development of a machine learning tool to predict deep inspiration breath hold requirement for locoregional right-sided breast radiation therapy patients.

Biomedical physics & engineering express
. This study presents machine learning (ML) models that predict if deep inspiration breath hold (DIBH) is needed based on lung dose in right-sided breast cancer patients during the initial computed tomography (CT) appointment.. Anatomic distances wer...

Prediction Trough Concentrations of Valproic Acid Among Chinese Adult Patients with Epilepsy Using Machine Learning Techniques.

Pharmaceutical research
OBJECTIVE: This study aimed to establish an optimal model based on machine learning (ML) to predict Valproic acid (VPA) trough concentrations in Chinese adult epilepsy patients.