AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

ROC Curve

Showing 181 to 190 of 3115 articles

Clear Filters

Development and validation of a machine learning approach for screening new leprosy cases based on the leprosy suspicion questionnaire.

Scientific reports
Leprosy is a dermatoneurological disease and can cause irreversible nerve damage. In addition to being able to mimic different rheumatological, neurological and dermatological diseases, leprosy is underdiagnosed because several professionals present ...

Deep-learning tool for early identification of non-traumatic intracranial hemorrhage etiology and application in clinical diagnostics based on computed tomography (CT) scans.

PeerJ
BACKGROUND: To develop an artificial intelligence system that can accurately identify acute non-traumatic intracranial hemorrhage (ICH) etiology (aneurysms, hypertensive hemorrhage, arteriovenous malformation (AVM), Moyamoya disease (MMD), cavernous ...

Machine learning-based prediction of distant metastasis risk in invasive ductal carcinoma of the breast.

PloS one
More than 90% of deaths due to breast cancer (BC) are due to metastasis-related complications, with invasive ductal carcinoma (IDC) of the breast being the most common pathologic type of breast cancer and highly susceptible to metastasis to distant o...

Machine learning for early diagnosis of Kawasaki disease in acute febrile children: retrospective cross-sectional study in China.

Scientific reports
Early diagnosis of Kawasaki disease (KD) allows timely treatment to be initiated, thereby preventing coronary artery aneurysms in children. However, it is challenging due to the subjective nature of the diagnostic criteria. This study aims to develop...

Continuous non-contact monitoring of neonatal activity.

BMC pediatrics
PURPOSE: Neonatal activity is an important physiological parameter in the neonatal intensive care unit (NICU). The degree of neonatal activity is associated with under and over-sedation and may also indicate the onset of disease. Activity may also ca...

Deep transfer learning radiomics for distinguishing sinonasal malignancies: a preliminary MRI study.

Future oncology (London, England)
PURPOSE: This study aimed to assess the diagnostic accuracy of combining MRI hand-crafted (HC) radiomics features with deep transfer learning (DTL) in identifying sinonasal squamous cell carcinoma (SCC), adenoid cystic carcinoma (ACC), and non-Hodgki...

Development of a Machine Learning-Powered Optimized Lung Allocation System for Maximum Benefits in Lung Transplantation: A Korean National Data.

Journal of Korean medical science
BACKGROUND: An ideal lung allocation system should reduce waiting list deaths, improve transplant survival, and ensure equitable organ allocation. This study aimed to develop a novel lung allocation score (LAS) system, the MaxBenefit LAS, to maximize...

Enhancing readmission prediction model in older stroke patients by integrating insight from readiness for hospital discharge: Prospective cohort study.

International journal of medical informatics
BACKGROUND: The 30-day hospital readmission rate is a key indicator of healthcare quality and system efficiency. This study aimed to develop machine-learning (ML) models to predict unplanned 30-day readmissions in older patients with ischemic stroke ...