AI Medical Compendium Topic:
ROC Curve

Clear Filters Showing 581 to 590 of 3121 articles

Intelligent diagnosis of Kawasaki disease from real-world data using interpretable machine learning models.

Hellenic journal of cardiology : HJC = Hellenike kardiologike epitheorese
OBJECTIVE: This study aimed to leverage real-world electronic medical record data to develop interpretable machine learning models for diagnosis of Kawasaki disease while also exploring and prioritizing the significant risk factors.

Deep learning approaches for the detection of scar presence from cine cardiac magnetic resonance adding derived parametric images.

Medical & biological engineering & computing
This work proposes a convolutional neural network (CNN) that utilizes different combinations of parametric images computed from cine cardiac magnetic resonance (CMR) images, to classify each slice for possible myocardial scar tissue presence. The CNN...

A two-stage ensemble learning based prediction and grading model for PD-1/PD-L1 inhibitor-related cardiac adverse events: A multicenter retrospective study.

Computer methods and programs in biomedicine
BACKGROUND: Immune-related cardiac adverse events (ircAEs) caused by programmed cell death protein-1 (PD-1) and programmed death-ligand-1 (PD-L1) inhibitors can lead to fulminant and even fatal consequences. This study aims to develop a prediction an...

Predictive ability of hypotension prediction index and machine learning methods in intraoperative hypotension: a systematic review and meta-analysis.

Journal of translational medicine
INTRODUCTION: Intraoperative Hypotension (IOH) poses a substantial risk during surgical procedures. The integration of Artificial Intelligence (AI) in predicting IOH holds promise for enhancing detection capabilities, providing an opportunity to impr...

Prediction models for retinopathy of prematurity occurrence based on artificial neural network.

BMC ophthalmology
INTRODUCTION: Early prediction and timely treatment are essential for minimizing the risk of visual loss or blindness of retinopathy of prematurity, emphasizing the importance of ROP screening in clinical routine.

Development and validation of an artificial intelligence model for predicting de novo distant bone metastasis in breast cancer: a dual-center study.

BMC women's health
OBJECTIVE: Breast cancer has become the most prevalent malignant tumor in women, and the occurrence of distant metastasis signifies a poor prognosis. Utilizing predictive models to forecast distant metastasis in breast cancer presents a novel approac...

Personalized approach to malignant struma ovarii: Insights from a web-based machine learning tool.

International journal of gynaecology and obstetrics: the official organ of the International Federation of Gynaecology and Obstetrics
OBJECTIVES: Malignant struma ovarii (MSO) is a rare ovarian tumor characterized by mature thyroid tissue. The diverse symptoms and uncommon nature of MSO can create difficulties in its diagnosis and treatment. This study aimed to analyze data and use...

Deep learning-based diagnosis and survival prediction of patients with renal cell carcinoma from primary whole slide images.

Pathology
There is an urgent clinical demand to explore novel diagnostic and prognostic biomarkers for renal cell carcinoma (RCC). We proposed deep learning-based artificial intelligence strategies. The study included 1752 whole slide images from multiple cent...

Exploring the Potential of a Smart Ring to Predict Postoperative Pain Outcomes in Orthopedic Surgery Patients.

Sensors (Basel, Switzerland)
Poor pain alleviation remains a problem following orthopedic surgery, leading to prolonged recovery time, increased morbidity, and prolonged opioid use after hospitalization. Wearable device data, collected during postsurgical recovery, may help amel...

Proteomics and machine learning in the prediction and explanation of low pectoralis muscle area.

Scientific reports
Low muscle mass is associated with numerous adverse outcomes independent of other associated comorbid diseases. We aimed to predict and understand an individual's risk for developing low muscle mass using proteomics and machine learning. We identifie...