AI Medical Compendium Topic:
ROC Curve

Clear Filters Showing 621 to 630 of 3126 articles

Endobronchial Ultrasound-Based Support Vector Machine Model for Differentiating between Benign and Malignant Mediastinal and Hilar Lymph Nodes.

Respiration; international review of thoracic diseases
INTRODUCTION: The aim of the study was to establish an ultrasonographic radiomics machine learning model based on endobronchial ultrasound (EBUS) to assist in diagnosing benign and malignant mediastinal and hilar lymph nodes (LNs).

Retrospective analysis of interpretable machine learning in predicting ICU thrombocytopenia in geriatric ICU patients.

Scientific reports
We developed an interpretable machine learning algorithm that prospectively predicts the risk of thrombocytopenia in older critically ill patients during their stay in the intensive care unit (ICU), ultimately aiding clinical decision-making and impr...

Deep learning-assisted two-dimensional transperineal ultrasound for analyzing bladder neck motion in women with stress urinary incontinence.

American journal of obstetrics and gynecology
BACKGROUND: No universally recognized transperineal ultrasound parameters are available for evaluating stress urinary incontinence. The information captured by commonly used perineal ultrasound parameters is limited and insufficient for a comprehensi...

Development and Validation of a Machine Learning COVID-19 Veteran (COVet) Deterioration Risk Score.

Critical care explorations
BACKGROUND AND OBJECTIVE: To develop the COVid Veteran (COVet) score for clinical deterioration in Veterans hospitalized with COVID-19 and further validate this model in both Veteran and non-Veteran samples. No such score has been derived and validat...

Prediction of prognosis in lung cancer using machine learning with inter-institutional generalizability: A multicenter cohort study (WJOG15121L: REAL-WIND).

Lung cancer (Amsterdam, Netherlands)
OBJECTIVES: Predicting the prognosis of lung cancer is crucial for providing optimal medical care. However, a method to accurately predict the overall prognosis in patients with stage IV lung cancer, even with the use of machine learning, has not bee...

Development of a machine learning approach for prediction of red blood cell transfusion in patients undergoing Cesarean section at a single institution.

Scientific reports
Despite recent advances in surgical techniques and perinatal management in obstetrics for reducing intraoperative bleeding, blood transfusion may occur during a cesarean section (CS). This study aims to identify machine learning models with an optima...

Deep learning with convolution neural network detecting mesiodens on panoramic radiographs: comparing four models.

Odontology
The aim of this study was to develop an optimal, simple, and lightweight deep learning convolutional neural network (CNN) model to detect the presence of mesiodens on panoramic radiographs. A total of 628 panoramic radiographs with and without mesiod...

Artificial intelligence for predicting shockable rhythm during cardiopulmonary resuscitation: In-hospital setting.

Resuscitation
AIM OF THE STUDY: This study aimed to develop an artificial intelligence (AI) model capable of predicting shockable rhythms from electrocardiograms (ECGs) with compression artifacts using real-world data from emergency department (ED) settings. Addit...

Predicting Clostridioides difficile infection outcomes with explainable machine learning.

EBioMedicine
BACKGROUND: Clostridioides difficile infection results in life-threatening short-term outcomes and the potential for subsequent recurrent infection. Predicting these outcomes at diagnosis, when important clinical decisions need to be made, has proven...

Prediction of hematoma expansion in spontaneous intracerebral hemorrhage using a multimodal neural network.

Scientific reports
Hematoma expansion occasionally occurs in patients with intracerebral hemorrhage (ICH), associating with poor outcome. Multimodal neural networks incorporating convolutional neural network (CNN) analysis of images and neural network analysis of tabul...