AIMC Topic: ROC Curve

Clear Filters Showing 61 to 70 of 3358 articles

Machine learning models for predicting multimorbidity trajectories in middle-aged and elderly adults.

Scientific reports
Multimorbidity has emerged as a significant public health issue in the context of global population aging. Predicting and managing the progression of multimorbidity in the elderly population is crucial. This study aims to develop predictive models fo...

Integrative multimodal ultrasound and radiomics for early prediction of neoadjuvant therapy response in breast cancer: a clinical study.

BMC cancer
PURPOSE: This study aimed to develop an early predictive model for neoadjuvant therapy (NAT) response in breast cancer by integrating multimodal ultrasound (conventional B-mode, shear-wave elastography, and contrast-enhanced ultrasound) and radiomics...

Deep learning-based video analysis for automatically detecting penetration and aspiration in videofluoroscopic swallowing study.

Scientific reports
The videofluoroscopic swallowing study (VFSS) is the gold standard for diagnosing dysphagia, but its interpretation is time-consuming and requires expertise. This study developed a deep learning model for automatically detecting penetration and aspir...

Development and evaluation of machine learning training strategies for neonatal mortality prediction using multicountry data.

Scientific reports
Neonatal mortality poses a critical challenge in global health, particularly in low- and middle-income countries. Leveraging advancements in technology, such as machine learning (ML) algorithms, offers the potential to improve neonatal care by enabli...

Identification and validation of parthanatos-related genes in end-stage renal disease.

Renal failure
BACKGROUND: End-Stage Renal Disease (ESRD) is a severe chronic kidney disease with a rising global incidence, often accompanied by various complications, severely impacting patients' quality of life. Parthanatos plays a crucial role in the pathogenes...

Interpretable machine learning models for survival prediction in prostate cancer bone metastases.

Scientific reports
Prostate cancer bone metastasis (PCBM) is a highly lethal condition with limited survival. Accurate survival prediction is essential for managing these typically incurable patients. However, existing clinical models lack precision. This study seeks t...

Psoas muscle CT radiomics-based machine learning models to predict response to infliximab in patients with Crohn's disease.

Annals of medicine
BACKGROUND: Crohn's disease (CD) is a chronic inflammatory bowel disease, with infliximab (IFX) commonly used for treatment. However, no clinically applicable model currently exists to predict the response of patients with CD to IFX therapy. Given th...

Multi-modality radiomics diagnosis of breast cancer based on MRI, ultrasound and mammography.

BMC medical imaging
OBJECTIVE: To develop a multi-modality machine learning-based radiomics model utilizing Magnetic Resonance Imaging (MRI), Ultrasound (US), and Mammography (MMG) for the differentiation of benign and malignant breast nodules.

Predictive analysis of pediatric gastroenteritis risk factors and seasonal variations using VGG Dense HybridNetClassifier a novel deep learning approach.

Scientific reports
Pediatric gastroenteritis is a major reason for sickness and death among children worldwide, especially in places where healthcare and clean sanitation are scarce. Conventional methods of diagnosis overlook possible risks and seasonal trends, which r...

Leveraging pathological markers of lower grade glioma to predict the occurrence of secondary epilepsy, a retrospective study.

Scientific reports
Epilepsy is a common manifestation in patients with lower grade glioma (LGG), often presenting as the initial symptom in approximately 70% of cases. This study aimed to identify clinical and pathological markers for epileptic seizures in patients wit...