AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Stomach Neoplasms

Showing 11 to 20 of 418 articles

Clear Filters

Contrastive Pre-Training and Multiple Instance Learning for Predicting Tumor Microsatellite Instability.

Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Accurate classification between tumor MicroSatellite Stability (MSS) and Instability (MSI) is crucial in gastrointestinal (GI) cancer prognosis and treatment. In this paper, we present a novel two-stage weakly supervised methodology, leveraging the s...

Analysis of shared pathogenic mechanisms and drug targets in myocardial infarction and gastric cancer based on transcriptomics and machine learning.

Frontiers in immunology
BACKGROUND: Recent studies have suggested a potential association between gastric cancer (GC) and myocardial infarction (MI), with shared pathogenic factors. This study aimed to identify these common factors and potential pharmacologic targets.

DOMSCNet: a deep learning model for the classification of stomach cancer using multi-layer omics data.

Briefings in bioinformatics
The rapid advancement of next-generation sequencing (NGS) technology and the expanding availability of NGS datasets have led to a significant surge in biomedical research. To better understand the molecular processes, underlying cancer and to support...

A risk prediction model for gastric cancer based on endoscopic atrophy classification.

BMC cancer
BACKGROUNDS: Gastric cancer (GC) is a prevalent malignancy affecting the digestive system. We aimed to develop a risk prediction model based on endoscopic atrophy classification for GC.

Machine learning reveals glycolytic key gene in gastric cancer prognosis.

Scientific reports
Glycolysis is recognized as a central metabolic pathway in the neoplastic evolution of gastric cancer, exerting profound effects on the tumor microenvironment and the neoplastic growth trajectory. However, the identification of key glycolytic genes t...

An interpretable machine learning model based on computed tomography radiomics for predicting programmed death ligand 1 expression status in gastric cancer.

Cancer imaging : the official publication of the International Cancer Imaging Society
BACKGROUND: Programmed death ligand 1 (PD-L1) expression status, closely related to immunotherapy outcomes, is a reliable biomarker for screening patients who may benefit from immunotherapy. Here, we developed and validated an interpretable machine l...

An ensemble learning model to predict lymph node metastasis in early gastric cancer.

Scientific reports
Lymph node metastasis is a critical factor for determining therapeutic strategies and assessing the prognosis of early gastric cancer. This work aimed to establish a more dependable predictive model for identify lymph node metastasis in early gastric...

Generation of surgical reports for lymph node dissection during laparoscopic gastric cancer surgery based on artificial intelligence.

International journal of computer assisted radiology and surgery
PURPOSE: This study aimed to develop an artificial intelligence (AI) model for the surgical report output of laparoscopic lymph node dissection in the suprapancreatic region during gastric cancer surgery.