AIMC Topic: tau Proteins

Clear Filters Showing 21 to 30 of 38 articles

Deep learning-based model for diagnosing Alzheimer's disease and tauopathies.

Neuropathology and applied neurobiology
AIMS: This study aimed to develop a deep learning-based model for differentiating tauopathies, including Alzheimer's disease (AD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD) and Pick's disease (PiD), based on tau-immunostai...

Characterizing the Clinical Features and Atrophy Patterns of -Related Frontotemporal Dementia With Disease Progression Modeling.

Neurology
BACKGROUND AND OBJECTIVE: Mutations in the gene cause frontotemporal dementia (FTD). Most previous studies investigating the neuroanatomical signature of mutations have grouped all different mutations together and shown an association with focal at...

A deep learning approach to identify gene targets of a therapeutic for human splicing disorders.

Nature communications
Pre-mRNA splicing is a key controller of human gene expression. Disturbances in splicing due to mutation lead to dysregulated protein expression and contribute to a substantial fraction of human disease. Several classes of splicing modulator compound...

Application of deep learning to understand resilience to Alzheimer's disease pathology.

Brain pathology (Zurich, Switzerland)
People who have Alzheimer's disease neuropathologic change (ADNC) typically associated with dementia but not the associated cognitive decline can be considered to be "resilient" to the effects of ADNC. We have previously reported lower neocortical le...

Machine learning-based decision tree classifier for the diagnosis of progressive supranuclear palsy and corticobasal degeneration.

Neuropathology and applied neurobiology
AIMS: This study aimed to clarify the different topographical distribution of tau pathology between progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD) and establish a machine learning-based decision tree classifier.

Recent Advances in Imaging of Preclinical, Sporadic, and Autosomal Dominant Alzheimer's Disease.

Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics
Observing Alzheimer's disease (AD) pathological changes in vivo with neuroimaging provides invaluable opportunities to understand and predict the course of disease. Neuroimaging AD biomarkers also allow for real-time tracking of disease-modifying tre...

Prediction of tau accumulation in prodromal Alzheimer's disease using an ensemble machine learning approach.

Scientific reports
We developed machine learning (ML) algorithms to predict abnormal tau accumulation among patients with prodromal AD. We recruited 64 patients with prodromal AD using the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. Supervised ML approa...

Deep learning detection of informative features in tau PET for Alzheimer's disease classification.

BMC bioinformatics
BACKGROUND: Alzheimer's disease (AD) is the most common type of dementia, typically characterized by memory loss followed by progressive cognitive decline and functional impairment. Many clinical trials of potential therapies for AD have failed, and ...

Classifications of Neurodegenerative Disorders Using a Multiplex Blood Biomarkers-Based Machine Learning Model.

International journal of molecular sciences
Easily accessible biomarkers for Alzheimer's disease (AD), Parkinson's disease (PD), frontotemporal dementia (FTD), and related neurodegenerative disorders are urgently needed in an aging society to assist early-stage diagnoses. In this study, we aim...

Antemortem CSF A42/A40 ratio predicts Alzheimer's disease pathology better than A42 in rapidly progressive dementias.

Annals of clinical and translational neurology
OBJECTIVE: Despite the critical importance of pathologically confirmed samples for biomarker validation, only a few studies have correlated CSF A42 values in vivo with postmortem Alzheimer's disease (AD) pathology, while none evaluated the CSF A42/A4...