BACKGROUND/AIMS: To assess the performance of a deep learning classifier for differentiation of glaucomatous optic neuropathy (GON) from compressive optic neuropathy (CON) based on ganglion cell-inner plexiform layer (GCIPL) and retinal nerve fibre l...
We developed a hybrid deep learning model (HDLM) algorithm that quantitatively predicts macular ganglion cell-inner plexiform layer (mGCIPL) thickness from red-free retinal nerve fiber layer photographs (RNFLPs). A total of 789 pairs of RNFLPs and sp...
Translational vision science & technology
Feb 18, 2020
PURPOSE: The purpose of this study was to develop a 3D deep learning system from spectral domain optical coherence tomography (SD-OCT) macular cubes to differentiate between referable and nonreferable cases for glaucoma applied to real-world datasets...
Translational vision science & technology
Feb 18, 2020
Artificial intelligence (AI)-based automated classification and segmentation of optical coherence tomography (OCT) features have become increasingly popular. However, its 3-dimensional volumetric nature has made developing an algorithm that generaliz...
For intravascular OCT (IVOCT) images, we developed an automated atherosclerotic plaque characterization method that used a hybrid learning approach, which combined deep-learning convolutional and hand-crafted, lumen morphological features. Processing...
Prior reports have shown optical coherence tomography (OCT) can differentiate normal colonic mucosa from neoplasia, potentially offering an alternative technique to endoscopic biopsy - the current gold-standard colorectal cancer screening and surveil...
Translational vision science & technology
Jan 30, 2020
PURPOSE: Artificial intelligence (AI) can identify the sex of an individual from color fundus photographs (CFPs). However, the mechanism(s) involved in this identification has not been determined. This study was conducted to determine the information...
Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie
Jan 27, 2020
PURPOSE: To develop a deep learning approach based on deep residual neural network (ResNet101) for the automated detection of glaucomatous optic neuropathy (GON) using color fundus images, understand the process by which the model makes predictions, ...
PURPOSE: Recent advances in deep learning have seen an increase in its application to automated image analysis in ophthalmology for conditions with a high prevalence. We wanted to identify whether deep learning could be used for the automated classif...
Full-field optical coherence tomography (FF-OCT) has been reported with its label-free subcellular imaging performance. To realize quantitive cancer detection, the support vector machine model of classifying normal and cancerous human liver tissue is...