AIMC Topic: Transcriptome

Clear Filters Showing 261 to 270 of 855 articles

Development and experimental validation of hypoxia-related gene signatures for osteosarcoma diagnosis and prognosis based on WGCNA and machine learning.

Scientific reports
Osteosarcoma (OS) is the most common primary malignant tumour of the bone with high mortality. Here, we comprehensively analysed the hypoxia signalling in OS and further constructed novel hypoxia-related gene signatures for OS prediction and prognosi...

Multi-transcriptomics analysis of microvascular invasion-related malignant cells and development of a machine learning-based prognostic model in hepatocellular carcinoma.

Frontiers in immunology
BACKGROUND: Microvascular invasion (MVI) stands as a pivotal pathological hallmark of hepatocellular carcinoma (HCC), closely linked to unfavorable prognosis, early recurrence, and metastatic progression. However, the precise mechanistic underpinning...

SR-TWAS: leveraging multiple reference panels to improve transcriptome-wide association study power by ensemble machine learning.

Nature communications
Multiple reference panels of a given tissue or multiple tissues often exist, and multiple regression methods could be used for training gene expression imputation models for transcriptome-wide association studies (TWAS). To leverage expression imputa...

Machine learning-driven diagnosis of multiple sclerosis from whole blood transcriptomics.

Brain, behavior, and immunity
Multiple sclerosis (MS) is a neurological disorder characterized by immune dysregulation. It begins with a first clinical manifestation, a clinically isolated syndrome (CIS), which evolves to definite MS in case of further clinical and/or neuroradiol...

Interactive molecular causal networks of hypertension using a fast machine learning algorithm MRdualPC.

BMC medical research methodology
BACKGROUND: Understanding the complex interactions between genes and their causal effects on diseases is crucial for developing targeted treatments and gaining insight into biological mechanisms. However, the analysis of molecular networks, especiall...

Identification of potential biomarkers for atrial fibrillation and stable coronary artery disease based on WGCNA and machine algorithms.

BMC cardiovascular disorders
BACKGROUND: Patients with atrial fibrillation (AF) often have coronary artery disease (CAD), but the biological link between them remains unclear. This study aims to explore the common pathogenesis of AF and CAD and identify common biomarkers.

Machine learning-based biomarker screening for acute myeloid leukemia prognosis and therapy from diverse cell-death patterns.

Scientific reports
Acute myeloid leukemia (AML) exhibits pronounced heterogeneity and chemotherapy resistance. Aberrant programmed cell death (PCD) implicated in AML pathogenesis suggests PCD-related signatures could serve as biomarkers to predict clinical outcomes and...

Identification and immune landscape of sarcopenia-related molecular clusters in inflammatory bowel disease by machine learning and integrated bioinformatics.

Scientific reports
Sarcopenia, a prevalent comorbidity of inflammatory bowel disease (IBD), is characterized by diminished skeletal muscle mass and strength. Nevertheless, the underlying interconnected mechanisms remain elusive. This study identified distinct expressio...

A stemness-based signature with inspiring indications in discriminating the prognosis, immune response, and somatic mutation of endometrial cancer patients revealed by machine learning.

Aging
Endometrial cancer (EC) is a fatal gynecologic tumor. Bioinformatic tools are increasingly developed to screen out molecular targets related to EC. Our study aimed to identify stemness-related prognostic biomarkers for new therapeutic strategies in E...