AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Tuberculosis

Showing 91 to 100 of 149 articles

Clear Filters

Prediction of rifampicin resistance beyond the RRDR using structure-based machine learning approaches.

Scientific reports
Rifampicin resistance is a major therapeutic challenge, particularly in tuberculosis, leprosy, P. aeruginosa and S. aureus infections, where it develops via missense mutations in gene rpoB. Previously we have highlighted that these mutations reduce p...

Machine-assisted interpretation of auramine stains substantially increases through-put and sensitivity of microscopic tuberculosis diagnosis.

Tuberculosis (Edinburgh, Scotland)
Of all bacterial infectious diseases, infection by Mycobacterium tuberculosis poses one of the highest morbidity and mortality burdens on humans throughout the world. Due to its speed and cost-efficiency, manual microscopy of auramine-stained sputum ...

A machine learning-based framework for Predicting Treatment Failure in tuberculosis: A case study of six countries.

Tuberculosis (Edinburgh, Scotland)
Tuberculosis is ranked as the 2nd deadliest disease in the world and is responsible for ten million deaths in 2017. Treatment failure is one of a main reason behind these deaths. Reasons of treatment failure are still unknown and the death rate due t...

Forecasting tuberculosis using diabetes-related google trends data.

Pathogens and global health
Online activity-based data can be used to aid infectious disease forecasting. Our aim was to exploit the converging nature of the tuberculosis (TB) and diabetes epidemics to forecast TB case numbers. Thus, we extended TB prediction models based on tr...

Artificial Intelligence, Radiology, and Tuberculosis: A Review.

Academic radiology
Tuberculosis is a leading cause of death from infectious disease worldwide, and is an epidemic in many developing nations. Countries where the disease is common also tend to have poor access to medical care, including diagnostic tests. Recent advance...

ATBdiscrimination: An in Silico Tool for Identification of Active Tuberculosis Disease Based on Routine Blood Test and T-SPOT.TB Detection Results.

Journal of chemical information and modeling
Tuberculosis remains one of the deadliest infectious diseases worldwide. Only 5-15% of people infected with develop active TB disease (ATB), while others remain latently infected (LTBI) during their lifetime, which has a completely different clinica...

Identifying tuberculous pleural effusion using artificial intelligence machine learning algorithms.

Respiratory research
BACKGROUND: The differential diagnosis of tuberculous pleural effusion (TPE) is challenging. In recent years, artificial intelligence (AI) machine learning algorithms have started being used to an increasing extent in disease diagnosis due to the hig...