Many invertebrates voluntarily lose (autotomize) limbs during antagonistic encounters, and some regenerate functional replacements. Because limb loss can have severe consequences on individual fitness, it is likely subject to significant selective pr...
BACKGROUND: Preoperative diagnosis of muscle invasion and American Joint Committee on Cancer (AJCC) stage plays a crucial role in guiding treatment strategies for bladder cancer (BCa). Utilizing quantitative analysis of tumor subregions via CT imagin...
Neural networks : the official journal of the International Neural Network Society
May 21, 2025
Unsupervised MR-CT synthesis presents a significant opportunity to reduce radiation exposure from CT scans and lower costs by eliminating the need for both MR and CT imaging. However, many existing unsupervised methods face limitations in capturing d...
Neural networks : the official journal of the International Neural Network Society
May 7, 2025
The ℓ-norm is playing an increasingly important role in unsupervised feature selection. However, existing algorithm for optimization problem with ℓ-norm constraint has two problems: First, they cannot automatically determine the sparsity, also known ...
IEEE transactions on ultrasonics, ferroelectrics, and frequency control
May 7, 2025
Ultrasound (US) is considered a key modality for the clinical assessment of hepatic steatosis (i.e., fatty liver) due to its noninvasiveness and availability. Deep learning methods have attracted considerable interest in this field, as they are capab...
IEEE journal of biomedical and health informatics
May 6, 2025
Robust decoding performance is essential for the practical deployment of brain-computer interface (BCI) systems. Existing EEG decoding models often rely on large amounts of annotated data collected through specific experimental setups, which fail to ...
Cardiac motion estimation is important for assessing the contractile health of the heart, and performing this in 3D can provide advantages due to the complex 3D geometry and motions of the heart. Deep learning image registration (DLIR) is a robust wa...
Supervised Deep-Learning (DL)-based reconstruction algorithms have shown state-of-the-art results for highly-undersampled dynamic Magnetic Resonance Imaging (MRI) reconstruction. However, the requirement of excessive high-quality ground-truth data hi...
IEEE transactions on neural networks and learning systems
May 2, 2025
Low-dose computed tomography (LDCT) image reconstruction techniques can reduce patient radiation exposure while maintaining acceptable imaging quality. Deep learning (DL) is widely used in this problem, but the performance of testing data (also known...
Astrocytes regulate synaptic activity across large brain territories via their complex, interconnected morphology. Emerging evidence supports the involvement of astrocytes in shaping relapse to opioid use through morphological rearrangements in the n...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.