AI Medical Compendium Journal:
Academic radiology

Showing 11 to 20 of 317 articles

Machine Learning Methods Based on Chest CT for Predicting the Risk of COVID-19-Associated Pulmonary Aspergillosis.

Academic radiology
RATIONALE AND OBJECTIVES: To develop and validate a machine learning model based on chest CT and clinical risk factors to predict secondary aspergillus infection in hospitalized COVID-19 patients.

Association Between Aortic Imaging Features and Impaired Glucose Metabolism: A Deep Learning Population Phenotyping Approach.

Academic radiology
RATIONALE AND OBJECTIVES: Type 2 diabetes is a known risk factor for vascular disease with an impact on the aorta. The aim of this study was to develop a deep learning framework for quantification of aortic phenotypes from magnetic resonance imaging ...

A Hybrid Machine Learning CT-Based Radiomics Nomogram for Predicting Cancer-Specific Survival in Curatively Resected Colorectal Cancer.

Academic radiology
RATIONALE AND OBJECTIVES: To develop and validate a computed tomography-based radiomics nomogram for cancer-specific survival (CSS) prediction in curatively resected colorectal cancer (CRC), and its performance was compared with the American Joint Co...

Evaluating the Efficacy of Perplexity Scores in Distinguishing AI-Generated and Human-Written Abstracts.

Academic radiology
RATIONALE AND OBJECTIVES: We aimed to evaluate the efficacy of perplexity scores in distinguishing between human-written and AI-generated radiology abstracts and to assess the relative performance of available AI detection tools in detecting AI-gener...

Machine Learning-Based CT Radiomics Model to Predict the Risk of Hip Fragility Fracture.

Academic radiology
RATIONALE AND OBJECTIVES: This research aimed to develop a combined model based on proximal femur attenuation values and radiomics features at routine CT to predict hip fragility fracture using machine learning methods.

Non-invasive Assessment of Human Epidermal Growth Factor Receptor 2 Expression in Gastric Cancer Based on Deep Learning: A Computed Tomography-based Multicenter Study.

Academic radiology
RATIONALE AND OBJECTIVES: The expression of human epidermal growth factor receptor 2 (HER2) in gastric cancer is closely associated with its treatment outcomes and prognosis. This study aims to develop and validate a HER2 prediction model based on co...

Machine Learning Model for Risk Stratification of Papillary Thyroid Carcinoma Based on Radiopathomics.

Academic radiology
RATIONALE AND OBJECTIVES: This study aims to develop a radiopathomics model based on preoperative ultrasound and fine-needle aspiration cytology (FNAC) images to enable accurate, non-invasive preoperative risk stratification for patients with papilla...

Photoacoustic Imaging with Attention-Guided Deep Learning for Predicting Axillary Lymph Node Status in Breast Cancer.

Academic radiology
RATIONALE AND OBJECTIVES: Preoperative assessment of axillary lymph node (ALN) status is essential for breast cancer management. This study explores the use of photoacoustic (PA) imaging combined with attention-guided deep learning (DL) for precise p...

Improved Image Quality Through Deep Learning Acceleration of Gradient-Echo Acquisitions in Uterine MRI: First Application with the Female Pelvis.

Academic radiology
RATIONALE AND OBJECTIVES: The aim of this study was to compare the image quality of a deep learning (DL)-accelerated volumetric interpolated breath-hold examination (VIBE) sequence with a standard (ST) VIBE sequence in assessing the uterus.

CT-based Machine Learning Radiomics Modeling: Survival Prediction and Mechanism Exploration in Ovarian Cancer Patients.

Academic radiology
RATIONALE AND OBJECTIVES: To create a radiomics model based on computed tomography (CT) to predict overall survival in ovarian cancer patients. To combine Rad-score with genomic data to explore the association between gene expression and Rad-score.