AIMC Journal:
BMC medical imaging

Showing 231 to 240 of 252 articles

Hahn-PCNN-CNN: an end-to-end multi-modal brain medical image fusion framework useful for clinical diagnosis.

BMC medical imaging
BACKGROUND: In medical diagnosis of brain, the role of multi-modal medical image fusion is becoming more prominent. Among them, there is no lack of filtering layered fusion and newly emerging deep learning algorithms. The former has a fast fusion spe...

Aggregation-and-Attention Network for brain tumor segmentation.

BMC medical imaging
BACKGROUND: Glioma is a malignant brain tumor; its location is complex and is difficult to remove surgically. To diagnosis the brain tumor, doctors can precisely diagnose and localize the disease using medical images. However, the computer-assisted d...

Lesion probability mapping in MS patients using a regression network on MR fingerprinting.

BMC medical imaging
BACKGROUND: To develop a regression neural network for the reconstruction of lesion probability maps on Magnetic Resonance Fingerprinting using echo-planar imaging (MRF-EPI) in addition to [Formula: see text], [Formula: see text], NAWM, and GM- proba...

Detecting neonatal acute bilirubin encephalopathy based on T1-weighted MRI images and learning-based approaches.

BMC medical imaging
BACKGROUND: Neonatal hyperbilirubinemia is a common clinical condition that requires medical attention in newborns, which may develop into acute bilirubin encephalopathy with a significant risk of long-term neurological deficits. The current clinical...

Weighing features of lung and heart regions for thoracic disease classification.

BMC medical imaging
BACKGROUND: Chest X-rays are the most commonly available and affordable radiological examination for screening thoracic diseases. According to the domain knowledge of screening chest X-rays, the pathological information usually lay on the lung and he...

Cardiothoracic ratio measurement using artificial intelligence: observer and method validation studies.

BMC medical imaging
BACKGROUND: Artificial Intelligence (AI) is a promising tool for cardiothoracic ratio (CTR) measurement that has been technically validated but not clinically evaluated on a large dataset. We observed and validated AI and manual methods for CTR measu...

A deep learning approach for dental implant planning in cone-beam computed tomography images.

BMC medical imaging
BACKGROUND: The aim of this study was to evaluate the success of the artificial intelligence (AI) system in implant planning using three-dimensional cone-beam computed tomography (CBCT) images.

Deep learning-based segmentation of the lung in MR-images acquired by a stack-of-spirals trajectory at ultra-short echo-times.

BMC medical imaging
BACKGROUND: Functional lung MRI techniques are usually associated with time-consuming post-processing, where manual lung segmentation represents the most cumbersome part. The aim of this study was to investigate whether deep learning-based segmentati...

Combining weakly and strongly supervised learning improves strong supervision in Gleason pattern classification.

BMC medical imaging
BACKGROUND: One challenge to train deep convolutional neural network (CNNs) models with whole slide images (WSIs) is providing the required large number of costly, manually annotated image regions. Strategies to alleviate the scarcity of annotated da...