PURPOSE: Convolutional Neural Networks (CNNs) have emerged as transformative tools in the field of radiation oncology, significantly advancing the precision of contouring practices. However, the adaptability of these algorithms across diverse scanner...
BACKGROUND: The purpose of this study was to improve the deep learning (DL) model performance in predicting and classifying IMRT gamma passing rate (GPR) by using input features related to machine parameters and a class balancing technique.
BACKGROUND: In this work, we compare input level, feature level and decision level data fusion techniques for automatic detection of clinically significant prostate lesions (csPCa).
BACKGROUND AND PURPOSE: To investigate the feasibility of synthesizing computed tomography (CT) images from magnetic resonance (MR) images in multi-center datasets using generative adversarial networks (GANs) for rectal cancer MR-only radiotherapy.
BACKGROUND AND PURPOSE: Various deep learning auto-segmentation (DLAS) models have been proposed, some of which have been commercialized. However, the issue of performance degradation is notable when pretrained models are deployed in the clinic. This...
PURPOSE: This study aims to develop an ensemble machine learning-based (EML-based) risk prediction model for radiation dermatitis (RD) in patients with head and neck cancer undergoing proton radiotherapy, with the goal of achieving superior predictiv...
BACKGROUND: Multiple artificial intelligence (AI)-based autocontouring solutions have become available, each promising high accuracy and time savings compared with manual contouring. Before implementing AI-driven autocontouring into clinical practice...
BACKGROUND: The most common route of breast cancer metastasis is through the mammary lymphatic network. An accurate assessment of the axillary lymph node (ALN) burden before surgery can avoid unnecessary axillary surgery, consequently preventing surg...
PURPOSE: Accurate deformable registration of magnetic resonance imaging (MRI) scans containing pathologies is challenging due to changes in tissue appearance. In this paper, we developed a novel automated three-dimensional (3D) convolutional U-Net ba...
BACKGROUND: Currently, automatic esophagus segmentation remains a challenging task due to its small size, low contrast, and large shape variation. We aimed to improve the performance of esophagus segmentation in deep learning by applying a strategy t...