AIMC Topic: Adult

Clear Filters Showing 1701 to 1710 of 14447 articles

Dynamic glucose enhanced imaging using direct water saturation.

Magnetic resonance in medicine
PURPOSE: Dynamic glucose enhanced (DGE) MRI studies employ CEST or spin lock (CESL) to study glucose uptake. Currently, these methods are hampered by low effect size and sensitivity to motion. To overcome this, we propose to utilize exchange-based li...

Utility of comprehensive genomic profiling combined with machine learning for prognostic stratification in stage II/III colorectal cancer after adjuvant chemotherapy.

International journal of clinical oncology
BACKGROUND AND PURPOSE: Accurate recurrence risk evaluation in patients with stage II and III colorectal cancer (CRC) remains difficult. Traditional histopathological methods frequently fall short in predicting outcomes after adjuvant chemotherapy. T...

Accelerated intracranial time-of-flight MR angiography with image-based deep learning image enhancement reduces scan times and improves image quality at 3-T and 1.5-T.

Neuroradiology
PURPOSE: Three-dimensional time-of-flight magnetic resonance angiography (TOF-MRA) is effective for cerebrovascular disease assessment, but clinical application is limited by long scan times and low spatial resolution. Recent advances in deep learnin...

Tlalpan 2020 Case Study: Enhancing Uric Acid Level Prediction with Machine Learning Regression and Cross-Feature Selection.

Nutrients
Uric acid is a key metabolic byproduct of purine degradation and plays a dual role in human health. At physiological levels, it acts as an antioxidant, protecting against oxidative stress. However, excessive uric acid can lead to hyperuricemia, cont...

Presenting a prediction model for HELLP syndrome through data mining.

BMC medical informatics and decision making
BACKGROUND: The HELLP syndrome represents three complications: hemolysis, elevated liver enzymes, and low platelet count. Since the causes and pathogenesis of HELLP syndrome are not yet fully known and well understood, distinguishing it from other pr...

LI-RADS-based hepatocellular carcinoma risk mapping using contrast-enhanced MRI and self-configuring deep learning.

Cancer imaging : the official publication of the International Cancer Imaging Society
BACKGROUND: Hepatocellular carcinoma (HCC) is often diagnosed using gadoxetate disodium-enhanced magnetic resonance imaging (EOB-MRI). Standardized reporting according to the Liver Imaging Reporting and Data System (LI-RADS) can improve Gd-MRI interp...

A clinical data-driven machine learning approach for predicting the effectiveness of piperacillin-tazobactam in treating lower respiratory tract infections.

BMC pulmonary medicine
BACKGROUND: In hospitalized patients, inadequate antibiotic dosage leading to bacterial resistance and increased antimicrobial use intensity due to overexposure to antibiotics are common problems. In the present study, we constructed a machine learni...

Establishment and validation of a ResNet-based radiomics model for predicting prognosis in cervical spinal cord injury patients.

Scientific reports
Cervical spinal cord injury (cSCI) poses a significant challenge due to the unpredictable nature of recovery, which ranges from mild paralysis to severe long-term disability. Accurate prognostic models are crucial for guiding treatment and rehabilita...

Applying machine learning algorithms to explore the impact of combined noise and dust on hearing loss in occupationally exposed populations.

Scientific reports
This study aimed to explore the combined impacts of occupational noise and dust on hearing and extra-auditory functions and identify associated risk factors via machine learning techniques. Data from 14,145 workers (627 with occupational noise-induce...

State-of-the-art for automated machine learning predicts outcomes in poor-grade aneurysmal subarachnoid hemorrhage using routinely measured laboratory & radiological parameters: coagulation parameters and liver function as key prognosticators.

Neurosurgical review
The objective of this study was to develop and evaluate automated machine learning (aML) models for predicting short-term (1-month) and medium-term (3-month) functional outcomes [Modified Rankin Scale (mRS)] in patients suffering from poor-grade aneu...