AIMC Topic: Adult

Clear Filters Showing 2081 to 2090 of 14447 articles

Application of Artificial Intelligence Software to Identify Emotions of Lung Cancer Patients in Preoperative Health Education: A Cross-Sectional Study.

Journal of nursing scholarship : an official publication of Sigma Theta Tau International Honor Society of Nursing
AIM(S): To determine the correlation between preoperative health education and the emotions of lung cancer patients, artificial intelligence software was used.

Supervised machine learning compared to large language models for identifying functional seizures from medical records.

Epilepsia
OBJECTIVE: The Functional Seizures Likelihood Score (FSLS) is a supervised machine learning-based diagnostic score that was developed to differentiate functional seizures (FS) from epileptic seizures (ES). In contrast to this targeted approach, large...

Bridging Neuroscience and Machine Learning: A Gender-Based Electroencephalogram Framework for Guilt Emotion Identification.

Sensors (Basel, Switzerland)
This study explores the link between the emotion "guilt" and human EEG data, and investigates the influence of gender differences on the expression of guilt and neutral emotions in response to visual stimuli. Additionally, the stimuli used in the stu...

Identification of 17 novel epigenetic biomarkers associated with anxiety disorders using differential methylation analysis followed by machine learning-based validation.

Clinical epigenetics
BACKGROUND: The changes in DNA methylation patterns may reflect both physical and mental well-being, the latter being a relatively unexplored avenue in terms of clinical utility for psychiatric disorders. In this study, our objective was to identify ...

Prediction of depressive disorder using machine learning approaches: findings from the NHANES.

BMC medical informatics and decision making
BACKGROUND: Depressive disorder, particularly major depressive disorder (MDD), significantly impact individuals and society. Traditional analysis methods often suffer from subjectivity and may not capture complex, non-linear relationships between ris...

A predictive model for recurrence in patients with borderline ovarian tumor based on neural multi-task logistic regression.

BMC cancer
BACKGROUND: Effective management of patients with borderline ovarian tumor (BOT) requires the timely identification of those at a higher risk of recurrence. Artificial neural networks have been successfully used in many areas of clinical event predic...

Prediction of tuberculosis treatment outcomes using biochemical makers with machine learning.

BMC infectious diseases
BACKGROUND: Tuberculosis (TB) continues to pose a significant threat to global public health. Enhancing patient prognosis is essential for alleviating the disease burden.

Research on the development of an intelligent prediction model for blood pressure variability during hemodialysis.

BMC nephrology
OBJECTIVE: Blood pressure fluctuations during dialysis, including intradialytic hypotension (IDH) and intradialytic hypertension (IDHTN), are common complications among patients undergoing maintenance hemodialysis. Early prediction of IDH and IDHTN c...

A hybrid optimization-enhanced 1D-ResCNN framework for epileptic spike detection in scalp EEG signals.

Scientific reports
In order to detect epileptic spikes, this paper suggests a deep learning architecture that blends 1D residual convolutional neural networks (1D-ResCNN) with a hybrid optimization strategy. The Layer-wise Adaptive Moments (LAMB) and AdamW algorithms h...

A recursive embedding and clustering technique for unraveling asymptomatic kidney disease using laboratory data and machine learning.

Scientific reports
Traditional methods for diagnosing chronic kidney disease (CKD) via laboratory data may not be capable of identifying early kidney disease. Kidney biopsy is unsuitable for regular screening, and imaging tests are costly and time-consuming. Several st...