AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Aged, 80 and over

Showing 281 to 290 of 3146 articles

Clear Filters

Predicting local control of brain metastases after stereotactic radiotherapy with clinical, radiomics and deep learning features.

Radiation oncology (London, England)
BACKGROUND AND PURPOSE: Timely identification of local failure after stereotactic radiotherapy for brain metastases allows for treatment modifications, potentially improving outcomes. While previous studies showed that adding radiomics or Deep Learni...

Machine learning-based prognostic modeling in gallbladder cancer using clinical data and pre-treatment [F]-FDG-PET-radiomic features.

Japanese journal of radiology
OBJECTIVES: This study evaluates the effectiveness of machine learning (ML) models that incorporate clinical and 2-deoxy-2-[F]fluoro-D-glucose ([F]-FDG)-positron emission tomography (PET)-radiomic features for predicting outcomes in gallbladder cance...

Early prediction of functional impairment at hospital discharge in patients with osteoporotic vertebral fracture: a machine learning approach.

Scientific reports
Although conservative treatment is commonly used for osteoporotic vertebral fracture (OVF), some patients experience functional disability following OVF. This study aimed to develop prediction models for new-onset functional impairment following admi...

Predictive modelling of hospital-acquired infection in acute ischemic stroke using machine learning.

Scientific reports
Hospital-acquired infections (HAIs) are serious complication for patients with acute ischemic stroke (AIS), often resulting in poor functional outcomes. However, no existing model can specifically predict HAI in AIS patients. Therefore, we employed t...

A proficient approach for the classification of Alzheimer's disease using a hybridization of machine learning and deep learning.

Scientific reports
Alzheimer's disease (AD) is a neurodegenerative disorder. It causes progressive degeneration of the nervous system, affecting the cognitive ability of the human brain. Over the past two decades, neuroimaging data from Magnetic Resonance Imaging (MRI)...

Multi-Energy Evaluation of Image Quality in Spectral CT Pulmonary Angiography Using Different Strength Deep Learning Spectral Reconstructions.

Academic radiology
RATIONALE AND OBJECTIVES: To evaluate and compare image quality of different energy levels of virtual monochromatic images (VMIs) using standard versus strong deep learning spectral reconstruction (DLSR) on dual-energy CT pulmonary angiogram (DECT-PA...

A novel interpretable deep learning model for diagnosis in emergency department dyspnoea patients based on complete data from an entire health care system.

PloS one
BACKGROUND: Dyspnoea is one of the emergency department's (ED) most common and deadly chief complaints, but frequently misdiagnosed and mistreated. We aimed to design a diagnostic decision support which classifies dyspnoeic ED visits into acute heart...