Dementia is characterized by a progressive loss of cognitive abilities, and diagnosing its early stages Mild Cognitive Impairment (MCI), is difficult since it is a transitory state that is different from total cognitive collapse. Recent clinical rese...
STUDY OBJECTIVE: Postoperative delirium is a neuropsychological syndrome that typically occurs in surgical patients. Its onset can lead to prolonged hospitalization as well as increased morbidity and mortality. Therefore, it is important to promptly ...
OBJECTIVES: Distinguishing solid nodules from nodules with ground-glass lesions in lung cancer is a critical diagnostic challenge, especially for tumors ≤2 cm. Human assessment of these nodules is associated with high inter-observer variability, whic...
BACKGROUND: Antimicrobial stewardship focuses on identifying patients who require extended-spectrum beta-lactamase (ESBL)-targeted therapy. 'Rule-in' tools have been researched extensively in areas of low endemicity; however, such tools are inadequat...
INTRODUCTION: To investigate the predictive value of the pre-treatment diffusion parameters of diffusion-weighted magnetic resonance imaging (DW-MRI) using artificial intelligence (AI) for prostate-specific antigen (PSA) response in patients with low...
UNLABELLED: is to study the possibility of using artificial intelligence technologies for age prediction based on CT studies of some structures of the skull and cervical vertebrae.
Journal of imaging informatics in medicine
Apr 26, 2024
The aim of this study was to investigate whether super-resolution deep learning reconstruction (SR-DLR) is superior to conventional deep learning reconstruction (DLR) with respect to interobserver agreement in the evaluation of neuroforaminal stenosi...
To better assess the pathology of neurodegenerative disorders and the efficacy of neuroprotective interventions, it is necessary to develop biomarkers that can accurately capture age-related biological changes in the human brain. Brain serotonin 2A r...
PURPOSE: The purpose of our study is to investigate image quality, efficiency, and diagnostic performance of a deep learning-accelerated single-shot breath-hold (DLSB) against BLADE for T-weighted MR imaging (TWI) for gastric cancer (GC).
The Omicron SARS-CoV-2 variant continues to strain healthcare systems. Developing tools that facilitate the identification of patients at highest risk of adverse outcomes is a priority. The study objectives are to develop population-scale predictive ...