AIMC Topic: Aged

Clear Filters Showing 1451 to 1460 of 12579 articles

Deep learning based screening model for hip diseases on plain radiographs.

PloS one
INTRODUCTION: The interpretation of plain hip radiographs can vary widely among physicians. This study aimed to develop and validate a deep learning-based screening model for distinguishing normal hips from severe hip diseases on plain radiographs.

Optimising test intervals for individuals with type 2 diabetes: A machine learning approach.

PloS one
BACKGROUND: Chronic disease monitoring programs often adopt a one-size-fits-all approach that does not consider variation in need, potentially leading to excessive or insufficient support for patients at different risk levels. Machine learning (ML) d...

Deep learning-based clustering for endotyping and post-arthroplasty response classification using knee osteoarthritis multiomic data.

Annals of the rheumatic diseases
OBJECTIVES: Primary knee osteoarthritis (KOA) is a heterogeneous disease with clinical and molecular contributors. Biofluids contain microRNAs and metabolites that can be measured by omic technologies. Multimodal deep learning is adept at uncovering ...

Causal Machine Learning for Left Atrial Appendage Occlusion in Patients With Atrial Fibrillation.

JACC. Clinical electrophysiology
BACKGROUND: Transcatheter left atrial appendage occlusion (LAAO) is an alternative to lifelong anticoagulation, but optimal patient selection remains challenging.

Image quality and diagnostic performance of deep learning reconstruction for diffusion- weighted imaging in 3 T breast MRI.

European journal of radiology
PURPOSE: This study aimed to assess the image quality and the diagnostic value of deep learning reconstruction (DLR) for diffusion-weighted imaging (DWI) compared with conventional single-shot echo-planar imaging (ss-EPI) in 3 T breast MRI.

Augmented Intelligence-Based Interference Pattern Analysis (AI-IPA) in Concentric Needle Electromyography.

Muscle & nerve
INTRODUCTION/AIMS: To add objectivity to the routine needle electromyography examination, we describe an "Augmented Intelligence" based interference pattern (IP) analysis method that mimics the subjective assessment by quantifying IP fullness, discre...

Automation bias in AI-assisted detection of cerebral aneurysms on time-of-flight MR angiography.

La Radiologia medica
PURPOSE: To determine how automation bias (inclination of humans to overly trust-automated decision-making systems) can affect radiologists when interpreting AI-detected cerebral aneurysm findings in time-of-flight magnetic resonance angiography (TOF...

Artificial Intelligence Model for Detection of Colorectal Cancer on Routine Abdominopelvic CT Examinations: A Training and External-Testing Study.

AJR. American journal of roentgenology
Radiologists are prone to missing some colorectal cancers (CRCs) on routine abdominopelvic CT examinations that are in fact detectable on the images. The purpose of this study was to develop an artificial intelligence (AI) model to detect CRC on ro...

Comparative analysis of machine learning models for predicting pathological complete response to neoadjuvant chemotherapy in breast cancer: An MRI radiomics approach.

Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB)
PURPOSE: The aim of this work is to compare different machine learning models for predicting pathological complete response (pCR) to neoadjuvant chemotherapy (NAC) in breast cancer using radiomics features from dynamic contrast-enhanced magnetic reso...

Classification of fundus autofluorescence images based on macular function in retinitis pigmentosa using convolutional neural networks.

Japanese journal of ophthalmology
PURPOSE: To determine whether convolutional neural networks (CNN) can classify the severity of central vision loss using fundus autofluorescence (FAF) images and color fundus images of retinitis pigmentosa (RP), and to evaluate the utility of those i...