AIMC Topic: Aged

Clear Filters Showing 321 to 330 of 13240 articles

Multi-tissue Methylation Analysis of Alzheimer's Disease: Insights into Pathways, Modules, and Key Genes.

Journal of molecular neuroscience : MN
DNA methylation plays a crucial role in the onset and progression of Alzheimer's disease (AD). Genome-wide methylation analysis of multi-tissue data can provide insights into the pathology and diagnostic biomarkers of AD. Computational tools were emp...

Image quality and radiation dose of reduced-dose abdominopelvic computed tomography (CT) with silver filter and deep learning reconstruction.

Scientific reports
To assess the image quality and radiation dose between reduced-dose CT with deep learning reconstruction (DLR) using SilverBeam filter and standard dose with iterative reconstruction (IR) in abdominopelvic CT. In total, 182 patients (mean age ± stand...

Machine learning to evaluate the effects of non-clinical social determinant features in predicting colorectal Cancer mortality in a medically underserved Appalachian population.

Scientific reports
Colorectal cancer (CRC) is the 2nd leading cause of cancer death in the United States (US). Rural Appalachia suffers the highest CRC incidence and mortality rates. There are several non-clinical health-related social determinant factors (SDOH) associ...

Artificial intelligence-based diabetes risk prediction from longitudinal DXA bone measurements.

Scientific reports
Diabetes mellitus (DM) is a serious global health concern that poses a significant threat to human life. Beyond its direct impact, diabetes substantially increases the risk of developing severe complications such as hypertension, cardiovascular disea...

Developing an explainable machine learning and fog computing-based visual rating scale for the prediction of dementia progression.

Scientific reports
Recently, dementia research has primarily concentrated on using Magnetic Resonance Imaging (MRI) to develop learning models in processing and analyzing brain data. However, these models often cannot provide early detection of affected brain regions. ...

Automatic segmentation of liver structures in multi-phase MRI using variants of nnU-Net and Swin UNETR.

Scientific reports
Accurate segmentation of the liver parenchyma, portal veins, hepatic veins, and lesions from MRI is important for hepatic disease monitoring and treatment. Multi-phase contrast enhanced imaging is superior in distinguishing hepatic structures compare...

Machine learning model for postpancreaticoduodenectomy haemorrhage prediction: an international multicentre cohort study.

BMJ open
OBJECTIVES: To develop and validate a machine learning model for precise risk stratification of postpancreaticoduodenectomy haemorrhage (PPH), enabling early identification of high-risk patients to guide clinical intervention.

Association Between Comorbidity Clusters and Mortality in Patients With Cancer: Predictive Modeling Using Machine Learning Approaches of Data From the United States and Hong Kong.

JMIR cancer
BACKGROUND: Patients with cancer and cancer survivors often experience multiple chronic health conditions, which can impact symptom burden and treatment outcomes. Despite the high prevalence of multimorbidity, research on cancer prognosis has predomi...

Detection and Analysis of Circadian Biomarkers for Metabolic Syndrome Using Wearable Data: Cross-Sectional Study.

JMIR medical informatics
BACKGROUND: Wearable devices are increasingly used for monitoring health and detecting digital biomarkers related to chronic diseases such as metabolic syndrome (MetS). Although circadian rhythm disturbances are known to contribute to MetS, few studi...

Specific Contribution of the Cerebellar Inferior Posterior Lobe to Motor Learning in Degenerative Cerebellar Ataxia.

Cerebellum (London, England)
BACKGROUND AND OBJECTIVE: Degenerative cerebellar ataxia, a group of progressive neurodegenerative disorders, is characterised by cerebellar atrophy and impaired motor learning. Using CerebNet, a deep learning algorithm for cerebellar segmentation, t...