AIMC Topic: Aged

Clear Filters Showing 421 to 430 of 12454 articles

Validation of an Artificial Intelligence-Powered Virtual Assistant for Emergency Triage in Neurology.

The neurologist
OBJECTIVES: Neurological emergencies pose significant challenges in medical care in resource-limited countries. Artificial intelligence (AI), particularly health chatbots, offers a promising solution. Rigorous validation is required to ensure safety ...

Utilizing explainable machine learning for progression-free survival prediction in high-grade serous ovarian cancer: insights from a prospective cohort study.

International journal of surgery (London, England)
BACKGROUND: High-grade serous ovarian cancer (HGSOC) remains one of the most challenging gynecological malignancies, with over 70% of ovarian cancer patients ultimately experiencing disease progression. The current prognostic tools for progression-fr...

Impact of Photon-counting Detector Computed Tomography on a Quantitative Interstitial Lung Disease Machine Learning Model.

Journal of thoracic imaging
PURPOSE: Compare the impact of photon-counting detector computed tomography (PCD-CT) to conventional CT on an interstitial lung disease (ILD) quantitative machine learning (QML) model.

Predicting Gene Comutation of EGFR and TP53 by Radiomics and Deep Learning in Patients With Lung Adenocarcinomas.

Journal of thoracic imaging
PURPOSE: This study was designed to construct progressive binary classification models based on radiomics and deep learning to predict the presence of epidermal growth factor receptor ( EGFR ) and TP53 mutations and to assess the models' capacities t...

Enhancing clinical decision support with physiological waveforms - A multimodal benchmark in emergency care.

Computers in biology and medicine
BACKGROUND: AI-driven prediction algorithms have the potential to enhance emergency medicine by enabling rapid and accurate decision-making regarding patient status and potential deterioration. However, the integration of multimodal data, including r...

Integrative proteomic profiling of tumor and plasma extracellular vesicles identifies a diagnostic biomarker panel for colorectal cancer.

Cell reports. Medicine
The lack of reliable non-invasive biomarkers for early colorectal cancer (CRC) diagnosis underscores the need for improved diagnostic tools. Extracellular vesicles (EVs) have emerged as promising candidates for liquid-biopsy-based cancer monitoring. ...

Using machine learning involving diagnoses and medications as a risk prediction tool for post-acute sequelae of COVID-19 (PASC) in primary care.

BMC medicine
BACKGROUND: The aim of our study was to determine whether the application of machine learning could predict PASC by using diagnoses from primary care and prescribed medication 1 year prior to PASC diagnosis.

Machine learning-based prediction of postoperative pancreatic fistula after laparoscopic pancreaticoduodenectomy.

BMC surgery
BACKGROUND: Clinically relevant postoperative pancreatic fistula (CR-POPF) following laparoscopic pancreaticoduodenectomy (LPD) is a critical complication that significantly worsens patient outcomes. However, the heterogeneity of its risk factors and...

Exploring the potential of machine learning in gastric cancer: prognostic biomarkers, subtyping, and stratification.

BMC cancer
BACKGROUND: Advancements in the management of gastric cancer (GC) and innovative therapeutic approaches highlight the significance of the role of biomarkers in GC prognosis. Machine-learning (ML)-based methods can be applied to identify the most impo...