AI Medical Compendium Topic:
Area Under Curve

Clear Filters Showing 751 to 760 of 1160 articles

Using neural attention networks to detect adverse medical events from electronic health records.

Journal of biomedical informatics
The detection of Adverse Medical Events (AMEs) plays an important role in disease management in ensuring efficient treatment delivery and quality improvement of health services. Recently, with the rapid development of hospital information systems, a ...

Validation of deep-learning-based triage and acuity score using a large national dataset.

PloS one
AIM: Triage is important in identifying high-risk patients amongst many less urgent patients as emergency department (ED) overcrowding has become a national crisis recently. This study aims to validate that a Deep-learning-based Triage and Acuity Sco...

Development and validation of a deep-learning algorithm for the detection of polyps during colonoscopy.

Nature biomedical engineering
The detection and removal of precancerous polyps via colonoscopy is the gold standard for the prevention of colon cancer. However, the detection rate of adenomatous polyps can vary significantly among endoscopists. Here, we show that a machine-learni...

Explainable machine-learning predictions for the prevention of hypoxaemia during surgery.

Nature biomedical engineering
Although anaesthesiologists strive to avoid hypoxemia during surgery, reliably predicting future intraoperative hypoxemia is not currently possible. Here, we report the development and testing of a machine-learning-based system that, in real time dur...

A Robust AUC Maximization Framework With Simultaneous Outlier Detection and Feature Selection for Positive-Unlabeled Classification.

IEEE transactions on neural networks and learning systems
The positive-unlabeled (PU) classification is a common scenario in real-world applications such as healthcare, text classification, and bioinformatics, in which we only observe a few samples labeled as "positive" together with a large volume of "unla...

Accuracy of an artificial neural network for detecting a regional abnormality in myocardial perfusion SPECT.

Annals of nuclear medicine
OBJECTIVES: The patient-based diagnosis with an artificial neural network (ANN) has shown potential utility for the detection of coronary artery disease; however, the region-based accuracy of the detected regions has not been fully evaluated. The aim...

PISTON: Predicting drug indications and side effects using topic modeling and natural language processing.

Journal of biomedical informatics
The process of discovering novel drugs to treat diseases requires a long time and high cost. It is important to understand side effects of drugs as well as their therapeutic effects, because these can seriously damage the patients due to unexpected a...

Artificial neural network algorithm model as powerful tool to predict acute lung injury following to severe acute pancreatitis.

Pancreatology : official journal of the International Association of Pancreatology (IAP) ... [et al.]
OBJECTIVE: The aim of this study is to predict the risk of severe acute pancreatitis (SAP) associated with acute lung injury (ALI) by artificial neural networks (ANNs) model.