AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Biomarkers

Showing 281 to 290 of 1630 articles

Clear Filters

Identification of CCR7 and CBX6 as key biomarkers in abdominal aortic aneurysm: Insights from multi-omics data and machine learning analysis.

IET systems biology
Abdominal aortic aneurysm (AAA) is a severe vascular condition, marked by the progressive dilation of the abdominal aorta, leading to rupture if untreated. The objective of this study was to identify key biomarkers and decipher the immune mechanisms ...

Identification of biomarkers for the diagnosis in colorectal polyps and metabolic dysfunction-associated steatohepatitis (MASH) by bioinformatics analysis and machine learning.

Scientific reports
Colorectal polyps are precursors of colorectal cancer. Metabolic dysfunction associated steatohepatitis (MASH) is one of metabolic dysfunction associated fatty liver disease (MAFLD) phenotypic manifestations. Much evidence has suggested an associatio...

Predicting abnormal C-reactive protein level for improving utilization by deep neural network model.

International journal of medical informatics
BACKGROUND: C-reactive protein (CRP) is an inflammatory biomarker frequently used in clinical practice. However, insufficient evidence-based ordering inevitably results in its overuse or underuse. This study aims to predict its normal and abnormal le...

Effective Alzheimer's disease detection using enhanced Xception blending with snapshot ensemble.

Scientific reports
Alzheimer's disease (AD), a prevalent neurodegenerative disorder, leads to progressive dementia, which impairs decision-making, problem-solving, and communication. While there is no cure, early detection can facilitate treatments to slow its progress...

Graph Convolutional Network for AD and MCI Diagnosis Utilizing Peripheral DNA Methylation: Réseau de neurones en graphes pour le diagnostic de la MA et du TCL à l'aide de la méthylation de l'ADN périphérique.

Canadian journal of psychiatry. Revue canadienne de psychiatrie
OBJECTIVE: Blood DNA methylation (DNAm) alterations have been widely reported in the onset and progression of mild cognitive impairment (MCI) and Alzheimer's disease (AD); however, DNAm is underutilized as a diagnostic biomarker for these diseases. W...

XModNN: Explainable Modular Neural Network to Identify Clinical Parameters and Disease Biomarkers in Transcriptomic Datasets.

Biomolecules
The Explainable Modular Neural Network (XModNN) enables the identification of biomarkers, facilitating the classification of diseases and clinical parameters in transcriptomic datasets. The modules within XModNN represent specific pathways or genes o...

Promoting LC-QToF based non-targeted fingerprinting and biomarker selection with machine learning for the discrimination of black tea geographical origin.

Food chemistry
Traceability and mislabelling of black tea for their geographical origin is known as a major fraud concern of the sector. Discrimination among various geographical indications (GIs) can be challenging due to the complexity of chemical fingerprints in...

Potential diagnostic biomarkers in heart failure: Suppressed immune-associated genes identified by bioinformatic analysis and machine learning.

European journal of pharmacology
Heart failure (HF) threatens tens of millions of people's health worldwide, which is the terminal stage in the development of majority cardiovascular diseases. Recently, an increasing number of studies have demonstrated that bioinformatics and machin...

The Application of Machine Learning in Doping Detection.

Journal of chemical information and modeling
Detecting doping agents in sports poses a significant challenge due to the continuous emergence of new prohibited substances and methods. Traditional detection methods primarily rely on targeted analysis, which is often labor-intensive and is suscept...