AIMC Topic: Case-Control Studies

Clear Filters Showing 61 to 70 of 905 articles

Identification of patients at risk for pancreatic cancer in a 3-year timeframe based on machine learning algorithms.

Scientific reports
Early detection of pancreatic cancer (PC) remains challenging largely due to the low population incidence and few known risk factors. However, screening in at-risk populations and detection of early cancer has the potential to significantly alter sur...

Deep learning assisted retinal microvasculature assessment and cerebral small vessel disease in Fabry disease.

Orphanet journal of rare diseases
PURPOSE: The aim of this study was to assess retinal microvascular parameters (RMPs) in Fabry disease (FD) using deep learning, and analyze the correlation with brain lesions related to cerebral small vessel disease (CSVD).

Exploring non-invasive biomarkers for pulmonary nodule detection based on salivary microbiomics and machine learning algorithms.

Scientific reports
Microorganisms are one of the most promising biomarkers for cancer, and the relationship between microorganisms and lung cancer occurrence and development provides significant potential for pulmonary nodule (PN) diagnosis from a microbiological persp...

Machine learning in lymphocyte and immune biomarker analysis for childhood thyroid diseases in China.

BMC pediatrics
OBJECTIVE: This study aims to characterize and analyze the expression of representative biomarkers like lymphocytes and immune subsets in children with thyroid disorders. It also intends to develop and evaluate a machine learning model to predict if ...

Deciphering the molecular fingerprint of haemoglobin in lung cancer: A new strategy for early diagnosis using two-trace two-dimensional correlation near infrared spectroscopy (2T2D-NIRS) and machine learning techniques.

Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
Lung cancer remains one of the deadliest malignancies worldwide, highlighting the need for highly sensitive and minimally invasive early diagnostic methods. Near-infrared spectroscopy (NIRS) offers unique advantages in probing molecular vibrational i...

A diagnostic model for polycystic ovary syndrome based on machine learning.

Scientific reports
Diagnosis of polycystic ovary syndrome remains a challenge. In this study, we propose constructing a diagnostic model of polycystic ovary syndrome by combining anti-Müllerian hormone with steroid hormones and oestrogens, with the aim of providing mor...

Exploring the role of breastfeeding, antibiotics, and indoor environments in preschool children atopic dermatitis through machine learning and hygiene hypothesis.

Scientific reports
The increasing global incidence of atopic dermatitis (AD) in children, especially in Western industrialized nations, has attracted considerable attention. The hygiene hypothesis, which posits that early pathogen exposure is crucial for immune system ...

Rapid, non-invasive breath analysis for enhancing detection of silicosis using mass spectrometry and interpretable machine learning.

Journal of breath research
Occupational lung diseases, such as silicosis, are a significant global health concern, especially with increasing exposure to engineered stone dust. Early detection of silicosis is helpful for preventing disease progression, but existing diagnostic ...