AIMC Topic: Decision Support Techniques

Clear Filters Showing 41 to 50 of 429 articles

Machine learning based prediction model for bile leak following hepatectomy for liver cancer.

HPB : the official journal of the International Hepato Pancreato Biliary Association
OBJECTIVE: We sought to develop a machine learning (ML) preoperative model to predict bile leak following hepatectomy for primary and secondary liver cancer.

Using artificial intelligence to predict post-operative outcomes in congenital heart surgeries: a systematic review.

BMC cardiovascular disorders
INTRODUCTION: Congenital heart disease (CHD) represents the most common group of congenital anomalies, constitutes a significant contributor to the burden of non-communicable diseases, highlighting the critical need for improved risk assessment tools...

Machine learning to predict the decision to perform surgery in hepatic echinococcosis.

HPB : the official journal of the International Hepato Pancreato Biliary Association
BACKGROUND: Cystic echinococcosis (CE) is a significant public health issue, primarily affecting the liver. While several management strategies exist, there is a lack of predictive tools to guide surgical decisions for hepatic CE. This study aimed to...

Predicting Early recurrence of atrial fibrilation post-catheter ablation using machine learning techniques.

BMC cardiovascular disorders
BACKGROUND: Catheter ablation is a common treatment for atrial fibrillation (AF), but recurrence rates remain variable. Predicting the success of catheter ablation is crucial for patient selection and management. This research seeks to create a machi...

Data-Driven Decision Support Tool Co-Development with a Primary Health Care Practice Based Learning Network.

F1000Research
BACKGROUND: The Alliance for Healthier Communities is a learning health system that supports Community Health Centres (CHCs) across Ontario, Canada to provide team-based primary health care to people who otherwise experience barriers to care. This ca...

Prediction of stroke-associated hospital-acquired pneumonia: Machine learning approach.

Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association
BACKGROUND: Stroke-associated Hospital Acquired Pneumonia (HAP) significantly impacts patient outcomes. This study explores the utility of machine learning models in predicting HAP in stroke patients, leveraging national registry data and SHapley Add...

Advancing personalised care in atrial fibrillation and stroke: The potential impact of AI from prevention to rehabilitation.

Trends in cardiovascular medicine
Atrial fibrillation (AF) is a complex condition caused by various underlying pathophysiological disorders and is the most common heart arrhythmia worldwide, affecting 2 % of the European population. This prevalence increases with age, imposing signif...

Research on intelligent decision support systems for oil and gas exploration based on machine learning.

PloS one
The process of extracting oil and gas via borehole drilling is largely dependent on subsurface structures, and thus, well log analysis is a major concern for economic feasibility. Well logs are essential for understanding the geology below the earth'...