AIMC Topic: Deep Learning

Clear Filters Showing 831 to 840 of 27309 articles

Multitask deep learning model based on multimodal data for predicting prognosis of rectal cancer: a multicenter retrospective study.

BMC medical informatics and decision making
BACKGROUND: Prognostic prediction is crucial to guide individual treatment for patients with rectal cancer. We aimed to develop and validated a multitask deep learning model for predicting prognosis in rectal cancer patients.

A radiogenomics study on F-FDG PET/CT in endometrial cancer by a novel deep learning segmentation algorithm.

BMC cancer
OBJECTIVE: To create an automated PET/CT segmentation method and radiomics model to forecast Mismatch repair (MMR) and TP53 gene expression in endometrial cancer patients, and to examine the effect of gene expression variability on image texture feat...

A method for spatial interpretation of weakly supervised deep learning models in computational pathology.

Scientific reports
Deep learning enables the modelling of high-resolution histopathology whole-slide images (WSI). Weakly supervised learning of tile-level data is typically applied for tasks where labels only exist on the patient or WSI level (e.g. patient outcomes or...

Enhancing pancreatic cancer detection in CT images through secretary wolf bird optimization and deep learning.

Scientific reports
The pancreas is a gland in the abdomen that helps to produce hormones and digest food. The irregular development of tissues in the pancreas is termed as pancreatic cancer. Identification of pancreatic tumors early is significant for enhancing surviva...

Epistasis regulates genetic control of cardiac hypertrophy.

Nature cardiovascular research
Although genetic variant effects often interact nonadditively, strategies to uncover epistasis remain in their infancy. Here we develop low-signal signed iterative random forests to elucidate the complex genetic architecture of cardiac hypertrophy, u...

Adaptive network steganography using deep learning and multimedia video analysis for enhanced security and fidelity.

PloS one
This study presents an advanced adaptive network steganography paradigm that integrates deep learning methodologies with multimedia video analysis to enhance the universality and security of network steganography practices. The proposed approach util...

Predicting clinical prognosis in gastric cancer using deep learning-based analysis of tissue pathomics images.

Computer methods and programs in biomedicine
OBJECTIVE: Evaluate the utility of a machine learning-based pathomics model in predicting overall survival (OS) post-surgery for gastric cancer patients.

Automated phenotypic analysis and classification of drug-treated cardiomyocytes via synergized time-lapse holographic imaging and deep learning.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVE: Predicting cardiovascular risk is critical for the therapy and control of cardiovascular illnesses. This work studies screening the toxicity of three drugs, (E-4031, isoprenaline, and sertindole) with various concentrations ...

Machine learning-based histopathological features of histological slides and clinical characteristics as a novel prognostic indicator in diffuse large B-cell lymphoma.

Pathology, research and practice
OBJECTIVE: This study developed and validated a deep learning model based on clinical and histopathological features for predicting the outcomes of diffuse large B-cell lymphoma (DLBCL).