AIMC Topic: Diagnosis, Differential

Clear Filters Showing 331 to 340 of 753 articles

Deep learning-based transformation of H&E stained tissues into special stains.

Nature communications
Pathology is practiced by visual inspection of histochemically stained tissue slides. While the hematoxylin and eosin (H&E) stain is most commonly used, special stains can provide additional contrast to different tissue components. Here, we demonstra...

MR-Based Radiomics for Differential Diagnosis between Cystic Pituitary Adenoma and Rathke Cleft Cyst.

Computational and mathematical methods in medicine
BACKGROUND: It is often tricky to differentiate cystic pituitary adenoma from Rathke cleft cyst with visual inspection because of similar MRI presentations between them. We aimed to design an MR-based radiomics model for improving differential diagno...

Explainable DCNN based chest X-ray image analysis and classification for COVID-19 pneumonia detection.

Scientific reports
To speed up the discovery of COVID-19 disease mechanisms by X-ray images, this research developed a new diagnosis platform using a deep convolutional neural network (DCNN) that is able to assist radiologists with diagnosis by distinguishing COVID-19 ...

RCoNet: Deformable Mutual Information Maximization and High-Order Uncertainty-Aware Learning for Robust COVID-19 Detection.

IEEE transactions on neural networks and learning systems
The novel 2019 Coronavirus (COVID-19) infection has spread worldwide and is currently a major healthcare challenge around the world. Chest computed tomography (CT) and X-ray images have been well recognized to be two effective techniques for clinical...

Classification of glioblastoma versus primary central nervous system lymphoma using convolutional neural networks.

Scientific reports
A subset of primary central nervous system lymphomas (PCNSL) are difficult to distinguish from glioblastoma multiforme (GBM) on magnetic resonance imaging (MRI). We developed a convolutional neural network (CNN) to distinguish these tumors on contras...

Detecting neonatal acute bilirubin encephalopathy based on T1-weighted MRI images and learning-based approaches.

BMC medical imaging
BACKGROUND: Neonatal hyperbilirubinemia is a common clinical condition that requires medical attention in newborns, which may develop into acute bilirubin encephalopathy with a significant risk of long-term neurological deficits. The current clinical...

Deep learning-based framework for the distinction of membranous nephropathy: a new approach through hyperspectral imagery.

BMC nephrology
BACKGROUND: Common subtypes seen in Chinese patients with membranous nephropathy (MN) include idiopathic membranous nephropathy (IMN) and hepatitis B virus-related membranous nephropathy (HBV-MN). However, the morphologic differences are not visible ...

Distinguishing nontuberculous mycobacteria from Mycobacterium tuberculosis lung disease from CT images using a deep learning framework.

European journal of nuclear medicine and molecular imaging
PURPOSE: To develop and evaluate the effectiveness of a deep learning framework (3D-ResNet) based on CT images to distinguish nontuberculous mycobacterium lung disease (NTM-LD) from Mycobacterium tuberculosis lung disease (MTB-LD).