AIMC Topic: Drug Resistance, Multiple, Bacterial

Clear Filters Showing 11 to 20 of 43 articles

Antimicrobial Activity of Tea and Agarwood Leaf Extracts Against Multidrug-Resistant Microbes.

BioMed research international
Emerging multidrug-resistant (MDR) strains are the main challenges to the progression of new drug discovery. To diminish infectious disease-causing pathogens, new antibiotics are required while the drying pipeline of potent antibiotics is adding to t...

Integrating machine learning and multitargeted drug design to combat antimicrobial resistance: a systematic review.

Journal of drug targeting
Antimicrobial resistance (AMR) is a critical global health challenge, undermining the efficacy of antimicrobial drugs against microorganisms like bacteria, fungi and viruses. Multidrug resistance (MDR) arises when microorganisms become resistant to m...

Neural network-based predictions of antimicrobial resistance phenotypes in multidrug-resistant from whole genome sequencing and gene expression.

Antimicrobial agents and chemotherapy
Whole genome sequencing (WGS) potentially represents a rapid approach for antimicrobial resistance genotype-to-phenotype prediction. However, the challenge still exists to predict fully minimum inhibitory concentrations (MICs) and antimicrobial susce...

Leveraging large-scale Mycobacterium tuberculosis whole genome sequence data to characterise drug-resistant mutations using machine learning and statistical approaches.

Scientific reports
Tuberculosis disease (TB), caused by Mycobacterium tuberculosis (Mtb), is a major global public health problem, resulting in > 1 million deaths each year. Drug resistance (DR), including the multi-drug form (MDR-TB), is challenging control of the dis...

A deep learning-driven discovery of berberine derivatives as novel antibacterial against multidrug-resistant Helicobacter pylori.

Signal transduction and targeted therapy
Helicobacter pylori (H. pylori) is currently recognized as the primary carcinogenic pathogen associated with gastric tumorigenesis, and its high prevalence and resistance make it difficult to tackle. A graph neural network-based deep learning model, ...

Development and validation of machine learning models to predict MDRO colonization or infection on ICU admission by using electronic health record data.

Antimicrobial resistance and infection control
BACKGROUND: Multidrug-resistant organisms (MDRO) pose a significant threat to public health. Intensive Care Units (ICU), characterized by the extensive use of antimicrobial agents and a high prevalence of bacterial resistance, are hotspots for MDRO p...

An exploration of descriptive machine learning approaches for antimicrobial resistance: Multidrug resistance patterns in Salmonella enterica.

Preventive veterinary medicine
Salmonellosis is one of the most common foodborne diseases worldwide, with the ability to infect humans and animals. Antimicrobial resistance (AMR) and, particularly, multidrug resistance (MDR) among Salmonella enterica poses a risk to human health. ...

Machine learning algorithms to predict colistin-induced nephrotoxicity from electronic health records in patients with multidrug-resistant Gram-negative infection.

International journal of antimicrobial agents
OBJECTIVES: Colistin-induced nephrotoxicity prolongs hospitalisation and increases mortality. The study aimed to construct machine learning models to predict colistin-induced nephrotoxicity in patients with multidrug-resistant Gram-negative infection...