AIMC Topic: Drug Resistance, Neoplasm

Clear Filters Showing 11 to 20 of 84 articles

Multi-omics and single-cell analysis reveals machine learning-based pyrimidine metabolism-related signature in the prognosis of patients with lung adenocarcinoma.

International journal of medical sciences
Pyrimidine metabolism is a hallmark of tumor metabolic reprogramming, while its significance in the prognostic and therapeutic implications of patients with lung adenocarcinoma (LUAD) still remains unclear. In this study, an integrated framework of...

Single-cell RNA sequencing and machine learning provide candidate drugs against drug-tolerant persister cells in colorectal cancer.

Biochimica et biophysica acta. Molecular basis of disease
Drug resistance often stems from drug-tolerant persister (DTP) cells in cancer. These cells arise from various lineages and exhibit complex dynamics. However, effectively targeting DTP cells remains challenging. We used single-cell RNA sequencing (sc...

Annotation-free deep learning algorithm trained on hematoxylin & eosin images predicts epithelial-to-mesenchymal transition phenotype and endocrine response in estrogen receptor-positive breast cancer.

Breast cancer research : BCR
Recent evidence indicates that endocrine resistance in estrogen receptor-positive (ER+) breast cancer is closely correlated with phenotypic characteristics of epithelial-to-mesenchymal transition (EMT). Nonetheless, identifying tumor tissues with a m...

Integrated multi-omics and machine learning reveal a gefitinib resistance signature for prognosis and treatment response in lung adenocarcinoma.

IUBMB life
Gefitinib resistance (GR) presents a significant challenge in treating lung adenocarcinoma (LUAD), highlighting the need for alternative therapies. This study explores the genetic basis of GR to improve prediction, prevention, and treatment strategie...

Synthetic augmentation of cancer cell line multi-omic datasets using unsupervised deep learning.

Nature communications
Integrating diverse types of biological data is essential for a holistic understanding of cancer biology, yet it remains challenging due to data heterogeneity, complexity, and sparsity. Addressing this, our study introduces an unsupervised deep learn...

Integrating machine learning-predicted circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) in metastatic breast cancer: A proof of principle study on endocrine resistance profiling.

Cancer letters
The study explored endocrine resistance by leveraging machine learning to establish the prognostic stratification of predicted Circulating tumor cells (CTCs), assessing its integration with circulating tumor DNA (ctDNA) features and contextually eval...

Using bioinformatics and artificial intelligence to map the cyclin-dependent kinase 4/6 inhibitor biomarker landscape in breast cancer.

Future oncology (London, England)
A cyclin-dependent kinase 4/6 (CDK4/6) inhibitor combined with endocrine therapy is the standard-of-care for patients with hormone receptor-positive/human epidermal growth factor receptor 2-negative advanced breast cancer. However, not all patients r...

Deep learning-based automatic image classification of oral cancer cells acquiring chemoresistance in vitro.

PloS one
Cell shape reflects the spatial configuration resulting from the equilibrium of cellular and environmental signals and is considered a highly relevant indicator of its function and biological properties. For cancer cells, various physiological and en...

Integrating machine learning and multi-omics analysis to develop an asparagine metabolism immunity index for improving clinical outcome and drug sensitivity in lung adenocarcinoma.

Immunologic research
Lung adenocarcinoma (LUAD) is a malignancy affecting the respiratory system. Most patients are diagnosed with advanced or metastatic lung cancer due to the fact that most of their clinical symptoms are insidious, resulting in a bleak prognosis. Given...

Machine learning-based integration develops a multiple programmed cell death signature for predicting the clinical outcome and drug sensitivity in colorectal cancer.

Anti-cancer drugs
Tumorigenesis and treatment are closely associated with various programmed cell death (PCD) patterns. However, the coregulatory role of multiple PCD patterns in colorectal cancer (CRC) remains unknown. In this study, we developed a multiple PCD index...