AIMC Topic:
Female

Clear Filters Showing 2041 to 2050 of 24669 articles

Explaining electroencephalogram channel and subband sensitivity for alcoholism detection.

Computers in biology and medicine
Alcoholism, a progressive loss of control over alcohol consumption, deteriorates mental and physical health over time. Automatic alcoholism detection can aid in early interventions and timely corrective actions. For this purpose, electroencephalogram...

Humans take the visuospatial perspective of robots and objects that imply social presence.

Acta psychologica
Visual perspective-taking (VPT) plays a crucial role in social interactions. Although the mechanisms behind VPT have been thoroughly studied in human-human interactions, there are only a few studies examining whether humans can also adopt the visuosp...

AI-facilitated home monitoring for cystic fibrosis exacerbations across pediatric and adult populations.

Journal of cystic fibrosis : official journal of the European Cystic Fibrosis Society
BACKGROUND: AI-aided home stethoscopes offer the opportunity of continuous remote monitoring of cystic fibrosis (CF) patients, reducing the need for clinic visits.

Intelligent Verification Tool for Surgical Information of Ophthalmic Patients: A Study Based on Artificial Intelligence Technology.

Journal of patient safety
OBJECTIVE: With the development of day surgery, the characteristics of "short, frequent and fast" ophthalmic surgery are becoming more prominent. However, nurses are not efficient in verifying patients' surgical information, and problems such as pati...

Predicting malignant risk of ground-glass nodules using convolutional neural networks based on dual-time-point F-FDG PET/CT.

Cancer imaging : the official publication of the International Cancer Imaging Society
BACKGROUND: Accurately predicting the malignant risk of ground-glass nodules (GGOs) is crucial for precise treatment planning. This study aims to utilize convolutional neural networks based on dual-time-point F-FDG PET/CT to predict the malignant ris...

Deep learning-based automated guide for defining a standard imaging plane for developmental dysplasia of the hip screening using ultrasonography: a retrospective imaging analysis.

BMC medical informatics and decision making
BACKGROUND: We aimed to propose a deep-learning neural network model for automatically detecting five landmarks during a two-dimensional (2D) ultrasonography (US) scan to develop a standard plane for developmental dysplasia of the hip (DDH) screening...

Diabetic peripheral neuropathy detection of type 2 diabetes using machine learning from TCM features: a cross-sectional study.

BMC medical informatics and decision making
AIMS: Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes mellitus. Early identification of individuals at high risk of DPN is essential for successful early intervention. Traditional Chinese medicine (TCM) tongue diagnos...

Factors affecting medical artificial intelligence (AI) readiness among medical students: taking stock and looking forward.

BMC medical education
BACKGROUND: Measuring artificial intelligence (AI) readiness among medical students is essential to assess how prepared future doctors are to work with AI technology. Therefore, this study aimed to examine the factors influencing AI readiness among m...

Sway frequencies may predict postural instability in Parkinson's disease: a novel convolutional neural network approach.

Journal of neuroengineering and rehabilitation
BACKGROUND: Postural instability greatly reduces quality of life in people with Parkinson's disease (PD). Early and objective detection of postural impairments is crucial to facilitate interventions. Our aim was to use a convolutional neural network ...

Three-dimensional analysis of mandibular and condylar growth using artificial intelligence tools: a comparison of twin-block and Frankel II Appliances.

BMC oral health
BACKGROUND: Analyzing the morphological growth changes upon mandibular advancement between Twin Block (TB) and Functional Regulator II (FR2) in Class II patients involves measuring the condylar and mandibular changes in terms of linear and volumetric...