AIMC Topic: Female

Clear Filters Showing 2171 to 2180 of 27118 articles

Torg-Pavlov ratio qualification to diagnose developmental cervical spinal stenosis based on HRViT neural network.

BMC musculoskeletal disorders
BACKGROUND: Developing computer-assisted methods to measure the Torg-Pavlov ratio (TPR), defined as the ratio of the sagittal diameter of the cervical spinal canal to the sagittal diameter of the corresponding vertebral body on lateral radiographs, c...

Interpretable machine learning model for predicting delirium in patients with sepsis: a study based on the MIMIC data.

BMC infectious diseases
OBJECTIVE: The aim of this study was to construct interpretable machine learning models to predict the risk of developing delirium in patients with sepsis and to explore the impact of delirium on the 28-day survival rate of patients.

Vascular-related biological stress, DNA methylation, allostatic load and domain-specific cognition: an integrated machine learning and causal inference approach.

BMC neurology
BACKGROUND: Vascular disease in aging populations spans a wide range of disorders including strokes, circulation disorders and hypertension. As individuals age, vascular disorders co-occur and hence exert combined effects. In the present study we int...

Elucidating predictors of preoperative acute heart failure in older people with hip fractures through machine learning and SHAP analysis: a retrospective cohort study.

BMC geriatrics
BACKGROUND: Acute heart failure (AHF) has become a significant challenge in older people with hip fractures. Timely identification and assessment of preoperative AHF have become key factors in reducing surgical risks and improving outcomes.

Comparison of machine learning models with conventional statistical methods for prediction of percutaneous coronary intervention outcomes: a systematic review and meta-analysis.

BMC cardiovascular disorders
INTRODUCTION: Percutaneous coronary intervention (PCI) has been the main treatment of coronary artery disease (CAD). In this review, we aimed to compare the performance of machine learning (ML) vs. logistic regression (LR) models in predicting differ...

Incorporation of explainable artificial intelligence in ensemble machine learning-driven pancreatic cancer diagnosis.

Scientific reports
Despite the strides made in medical science, pancreatic cancer continues to be a threat, highlighting the urgent need for creative strategies to address this concern. Recently, a potential approach that has attracted significant attention is using ma...

Development and validation of a machine learning risk prediction model for asthma attacks in adults in primary care.

NPJ primary care respiratory medicine
Primary care consultations provide an opportunity for patients and clinicians to assess asthma attack risk. Using a data-driven risk prediction tool with routinely collected health records may be an efficient way to aid promotion of effective self-ma...

Prediction of Reactivation After Antivascular Endothelial Growth Factor Monotherapy for Retinopathy of Prematurity: Multimodal Machine Learning Model Study.

Journal of medical Internet research
BACKGROUND: Retinopathy of prematurity (ROP) is the leading preventable cause of childhood blindness. A timely intravitreal injection of antivascular endothelial growth factor (anti-VEGF) is required to prevent retinal detachment with consequent visi...

Association of acute kidney injury with 1-year mortality in granulomatosis with polyangiitis patients: a cohort study using mediation analyses and machine learning.

Rheumatology international
To investigate the correlation between acute kidney injury (AKI) and 1-year mortality in patients with granulomatosis with polyangiitis (GPA). Clinical data for GPA patients were extracted from the MIMIC-IV (version 3.0) database. Logistic and Cox re...