AIMC Topic: Gene Expression Regulation, Neoplastic

Clear Filters Showing 511 to 520 of 589 articles

Deciphering the Role of SLFN12: A Novel Biomarker for Predicting Immunotherapy Outcomes in Glioma Patients Through Artificial Intelligence.

Journal of cellular and molecular medicine
Gliomas are the most prevalent form of primary brain tumours. Recently, targeting the PD-1 pathway with immunotherapies has shown promise as a novel glioma treatment. However, not all patients experience long-lasting benefits, underscoring the necess...

Machine Learning Enabled Prediction of Biologically Relevant Gene Expression Using CT-Based Radiomic Features in Non-Small Cell Lung Cancer.

Cancer medicine
BACKGROUND: Non-small-cell lung cancer (NSCLC) remains a global health challenge, driving morbidity and mortality. The emerging field of radiogenomics utilizes statistical methods to correlate radiographic tumor features with genomic characteristics ...

Building a Risk Scoring Model for ARDS in Lung Adenocarcinoma Patients Using Machine Learning Algorithms.

Journal of cellular and molecular medicine
Lung adenocarcinoma (LUAD), the predominant form of non-small-cell lung cancer, is frequently complicated by acute respiratory distress syndrome (ARDS), which increases mortality risks. Investigating the prognostic implications of ARDS-related genes ...

GD-Net: An Integrated Multimodal Information Model Based on Deep Learning for Cancer Outcome Prediction and Informative Feature Selection.

Journal of cellular and molecular medicine
Multimodal information provides valuable resources for cancer prognosis and survival prediction. However, the computational integration of this heterogeneous data information poses significant challenges due to the complex interactions between molecu...

Machine Learning Reveals Aneuploidy Characteristics in Cancers: The Impact of BEX4.

Frontiers in bioscience (Landmark edition)
BACKGROUND: Aneuploidy is crucial yet under-explored in cancer pathogenesis. Specifically, the involvement of brain expressed X-linked gene 4 () in microtubule formation has been identified as a potential aneuploidy mechanism. Nevertheless, 's compre...

Comprehensive bioinformatics and machine learning analyses for breast cancer staging using TCGA dataset.

Briefings in bioinformatics
Breast cancer is an alarming global health concern, including a vast and varied set of illnesses with different molecular characteristics. The fusion of sophisticated computational methodologies with extensive biological datasets has emerged as an ef...

Unveiling Varied Cell Death Patterns in Lung Adenocarcinoma Prognosis and Immunotherapy Based on Single-Cell Analysis and Machine Learning.

Journal of cellular and molecular medicine
Programmed cell death (PCD) pathways hold significant influence in the etiology and progression of a variety of cancer forms, particularly offering promising prognostic markers and clues to drug sensitivity for lung adenocarcinoma (LUAD) patients. We...

Integrated machine learning developed a prognosis-related gene signature to predict prognosis in oesophageal squamous cell carcinoma.

Journal of cellular and molecular medicine
The mortality rate of oesophageal squamous cell carcinoma (ESCC) remains high, and conventional TNM systems cannot accurately predict its prognosis, thus necessitating a predictive model. In this study, a 17-gene prognosis-related gene signature (PRS...

Machine Learning Diagnostic Model for Hepatocellular Carcinoma Based on Liquid-Liquid Phase Separation and Ferroptosis-Related Genes.

The Turkish journal of gastroenterology : the official journal of Turkish Society of Gastroenterology
BACKGROUND/AIMS: Hepatocellular carcinoma (HCC) represents a primary liver malignancy with a multifaceted molecular landscape. The interplay between liquid-liquid phase separation (LLPS) and ferroptosis-a regulated form of cell death-has garnered int...

Deep contrastive learning for predicting cancer prognosis using gene expression values.

Briefings in bioinformatics
Recent advancements in image classification have demonstrated that contrastive learning (CL) can aid in further learning tasks by acquiring good feature representation from a limited number of data samples. In this paper, we applied CL to tumor trans...