AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Liver Cirrhosis

Showing 1 to 10 of 191 articles

Clear Filters

Assessing the diagnostic accuracy of ChatGPT-4 in the histopathological evaluation of liver fibrosis in MASH.

Hepatology communications
BACKGROUND: Large language models like ChatGPT have demonstrated potential in medical image interpretation, but their efficacy in liver histopathological analysis remains largely unexplored. This study aims to assess ChatGPT-4-vision's diagnostic acc...

Multiple machine learning algorithms identify 13 types of cell death-critical genes in large and multiple non-alcoholic steatohepatitis cohorts.

Lipids in health and disease
BACKGROUND: Dysregulated programmed cell death pathways mechanistically contribute to hepatic inflammation and fibrogenesis in non-alcoholic steatohepatitis (NASH). Identification of cell death genes may offer insights into diagnostic and therapeutic...

Machine Learning Models predicting Decompensation in Cirrhosis.

Journal of gastrointestinal and liver diseases : JGLD
BACKGROUND AND AIMS: Decompensation of cirrhosis significantly decreases survival, thus, prevention of complications is paramount. We used machine learning techniques to identify parameters predicting decompensation.

Application of Interpretable Machine Learning Models to Predict the Risk Factors of HBV-Related Liver Cirrhosis in CHB Patients Based on Routine Clinical Data: A Retrospective Cohort Study.

Journal of medical virology
Chronic hepatitis B (CHB) infection represents a significant global public health issue, often leading to hepatitis B virus (HBV)-related liver cirrhosis (HBV-LC) with poor prognoses. Early identification of HBV-LC risk is essential for timely interv...

Machine learning algorithms reveal gut microbiota signatures associated with chronic hepatitis B-related hepatic fibrosis.

World journal of gastroenterology
BACKGROUND: Hepatic fibrosis (HF) represents a pivotal stage in the progression and potential reversal of cirrhosis, underscoring the importance of early identification and therapeutic intervention to modulate disease trajectory.

Utilizing Machine Learning to Predict Liver Allograft Fibrosis by Leveraging Clinical and Imaging Data.

Clinical transplantation
BACKGROUND AND AIM: Liver transplant (LT) recipients may succumb to graft-related pathologies, contributing to graft fibrosis (GF). Current methods to diagnose GF are limited, ranging from procedural-related complications to low accuracy. With recent...

Machine learning-based integration reveals reliable biomarkers and potential mechanisms of NASH progression to fibrosis.

Scientific reports
Non-alcoholic fatty liver disease (NAFLD) affects about 25% of adults worldwide. Its advanced form, non-alcoholic steatohepatitis (NASH), is a major cause of liver fibrosis, but there are no non-invasive tests for diagnosing or preventing it. In our ...

Development of an explainable prediction model for portal vein system thrombosis post-splenectomy in patients with cirrhosis.

BMJ health & care informatics
BACKGROUND: Portal vein system thrombosis (PVST) is a common and potentially life-threatening complication following splenectomy plus pericardial devascularisation (SPDV) in patients with cirrhosis and portal hypertension. Early prediction of PVST is...

Characterization of fibrotic liver tissue microstructure for predicting shear wave speed variability: a machine-learning-based computational study.

Physics in medicine and biology
This study aimed to establish a link between the microstructure of simulated fibrotic liver tissues and the measured shear wave speed (SWS) variability using a machine-learning (ML)-based approach.. Fibrotic liver tissues were simulated using biphasi...