AIMC Topic: Lung Neoplasms

Clear Filters Showing 221 to 230 of 1616 articles

Real-World and Clinical Trial Validation of a Deep Learning Radiomic Biomarker for PD-(L)1 Immune Checkpoint Inhibitor Response in Advanced Non-Small Cell Lung Cancer.

JCO clinical cancer informatics
PURPOSE: This study developed and validated a novel deep learning radiomic biomarker to estimate response to immune checkpoint inhibitor (ICI) therapy in advanced non-small cell lung cancer (NSCLC) using real-world data (RWD) and clinical trial data.

Development of a urine-based metabolomics approach for multi-cancer screening and tumor origin prediction.

Frontiers in immunology
BACKGROUND: Cancer remains a leading cause of mortality worldwide. A non-invasive screening solution was required for early diagnosis of cancer. Multi-cancer early detection (MCED) tests have been considered to address the challenge by simultaneously...

Comparative Analysis of Generative Pre-Trained Transformer Models in Oncogene-Driven Non-Small Cell Lung Cancer: Introducing the Generative Artificial Intelligence Performance Score.

JCO clinical cancer informatics
PURPOSE: Precision oncology in non-small cell lung cancer (NSCLC) relies on biomarker testing for clinical decision making. Despite its importance, challenges like the lack of genomic oncology training, nonstandardized biomarker reporting, and a rapi...

Non-invasive Prediction of Lymph Node Metastasis in NSCLC Using Clinical, Radiomics, and Deep Learning Features From F-FDG PET/CT Based on Interpretable Machine Learning.

Academic radiology
PURPOSE: This study aimed to develop and evaluate a machine learning model combining clinical, radiomics, and deep learning features derived from PET/CT imaging to predict lymph node metastasis (LNM) in patients with non-small cell lung cancer (NSCLC...

Spectrum of errors in nodule detection and characterization using machine learning: A pictorial essay.

Current problems in diagnostic radiology
In academic and research settings, computer-aided nodule detection software has been shown to increase accuracy, efficiency, and throughput. However, radiologists need to be familiar with the spectrum of errors that can occur when these algorithms ar...

Utility of a Large Language Model for Extraction of Clinical Findings from Healthcare Data following Lung Ablation: A Feasibility Study.

Journal of vascular and interventional radiology : JVIR
To assess the feasibility of utilizing a large language model (LLM) in extracting clinically relevant information from healthcare data in patients who have undergone microwave ablation for lung tumors. In this single-center retrospective study, radio...

Deep learning using histological images for gene mutation prediction in lung cancer: a multicentre retrospective study.

The Lancet. Oncology
BACKGROUND: Accurate detection of driver gene mutations is crucial for treatment planning and predicting prognosis for patients with lung cancer. Conventional genomic testing requires high-quality tissue samples and is time-consuming and resource-con...

Self-supervised learning improves robustness of deep learning lung tumor segmentation models to CT imaging differences.

Medical physics
BACKGROUND: Self-supervised learning (SSL) is an approach to extract useful feature representations from unlabeled data, and enable fine-tuning on downstream tasks with limited labeled examples. Self-pretraining is a SSL approach that uses curated do...

Machine learning-aided discovery of T790M-mutant EGFR inhibitor CDDO-Me effectively suppresses non-small cell lung cancer growth.

Cell communication and signaling : CCS
BACKGROUND: Epidermal growth factor receptor (EGFR) T790M mutation often occurs during long durational erlotinib treatment of non-small cell lung cancer (NSCLC) patients, leading to drug resistance and disease progression. Identification of new selec...