AIMC Topic: Meningioma

Clear Filters Showing 51 to 60 of 78 articles

Ethical concerns around use of artificial intelligence in health care research from the perspective of patients with meningioma, caregivers and health care providers: a qualitative study.

CMAJ open
BACKGROUND: As artificial intelligence (AI) approaches in research increase and AI becomes more integrated into medicine, there is a need to understand perspectives from members of the Canadian public and medical community. The aim of this project wa...

Automated Meningioma Segmentation in Multiparametric MRI : Comparable Effectiveness of a Deep Learning Model and Manual Segmentation.

Clinical neuroradiology
PURPOSE: Volumetric assessment of meningiomas represents a valuable tool for treatment planning and evaluation of tumor growth as it enables a more precise assessment of tumor size than conventional diameter methods. This study established a dedicate...

An enhanced deep learning approach for brain cancer MRI images classification using residual networks.

Artificial intelligence in medicine
Cancer is the second leading cause of death after cardiovascular diseases. Out of all types of cancer, brain cancer has the lowest survival rate. Brain tumors can have different types depending on their shape, texture, and location. Proper diagnosis ...

Comparison of machine learning classifiers for differentiation of grade 1 from higher gradings in meningioma: A multicenter radiomics study.

Magnetic resonance imaging
BACKGROUND AND PURPOSE: Advanced imaging analysis for the prediction of tumor biology and modelling of clinically relevant parameters using computed imaging features is part of the emerging field of radiomics research. Here we test the hypothesis tha...

Image-Guided Robotic Radiosurgery for Treatment of Recurrent Grade II and III Meningiomas. A Single-Center Study.

World neurosurgery
OBJECTIVE: Stereotactic radiosurgery (SRS) has been increasingly applied for malignant meningiomas as an alternative to conventionally fractioned radiation therapy. We performed a retrospective analysis of an institutional patient cohort with maligna...

Presurgical differentiation between malignant haemangiopericytoma and angiomatous meningioma by a radiomics approach based on texture analysis.

Journal of neuroradiology = Journal de neuroradiologie
PURPOSE: To assess whether a machine-learning model based on texture analysis (TA) could yield a more accurate diagnosis in differentiating malignant haemangiopericytoma (HPC) from angiomatous meningioma (AM).

A Novel Method for Classifying Liver and Brain Tumors Using Convolutional Neural Networks, Discrete Wavelet Transform and Long Short-Term Memory Networks.

Sensors (Basel, Switzerland)
Rapid classification of tumors that are detected in the medical images is of great importance in the early diagnosis of the disease. In this paper, a new liver and brain tumor classification method is proposed by using the power of convolutional neur...

Application of MR morphologic, diffusion tensor, and perfusion imaging in the classification of brain tumors using machine learning scheme.

Neuroradiology
PURPOSE: While MRI is the modality of choice for the assessment of patients with brain tumors, differentiation between various tumors based on their imaging characteristics might be challenging due to overlapping imaging features. The purpose of this...

Radiomics and machine learning may accurately predict the grade and histological subtype in meningiomas using conventional and diffusion tensor imaging.

European radiology
OBJECTIVES: Preoperative, noninvasive prediction of the meningioma grade is important because it influences the treatment strategy. The purpose of this study was to evaluate the role of radiomics features of postcontrast T1-weighted images (T1C), app...