AIMC Topic:
Middle Aged

Clear Filters Showing 1701 to 1710 of 14390 articles

ds-FCRN: three-dimensional dual-stream fully convolutional residual networks and transformer-based global-local feature learning for brain age prediction.

Brain structure & function
The brain undergoes atrophy and cognitive decline with advancing age. The utilization of brain age prediction represents a pioneering methodology in the examination of brain aging. This study aims to develop a deep learning model with high predictive...

The efficiency of artificial intelligence for management and clinical decision-making in the identification of patients with hidden HCV infection (Intelligen-C strategy).

Gastroenterologia y hepatologia
INTRODUCTION: Artificial intelligence (AI) allows the optimization of diagnostic processes for hepatitis C virus (HCV) patients. Our objective was to evaluate the clinical, economic, and management benefits of an AI-based clinical decision support sy...

CT-based Machine Learning Radiomics Modeling: Survival Prediction and Mechanism Exploration in Ovarian Cancer Patients.

Academic radiology
RATIONALE AND OBJECTIVES: To create a radiomics model based on computed tomography (CT) to predict overall survival in ovarian cancer patients. To combine Rad-score with genomic data to explore the association between gene expression and Rad-score.

Clinical impact of an explainable machine learning with amino acid PET imaging: application to the diagnosis of aggressive glioma.

European journal of nuclear medicine and molecular imaging
PURPOSE: Radiomics-based machine learning (ML) models of amino acid positron emission tomography (PET) images have shown efficiency in glioma prediction tasks. However, their clinical impact on physician interpretation remains limited. This study inv...

Deep Learning-Derived Quantitative Scores for Chronic Rhinosinusitis Assessment: Correlation With Quality of Life Outcomes.

American journal of rhinology & allergy
BackgroundComputed tomography (CT) plays a crucial role in assessing chronic rhinosinusitis, but lacks objective quantifiable indicators.ObjectiveThis study aimed to use deep learning for automated sinus segmentation to generate distinct quantitative...

Identification of an ANCA-associated vasculitis cohort using deep learning and electronic health records.

International journal of medical informatics
BACKGROUND: ANCA-associated vasculitis (AAV) is a rare but serious disease. Traditional case-identification methods using claims data can be time-intensive and may miss important subgroups. We hypothesized that a deep learning model analyzing electro...

Deep learning-aided diagnosis of acute abdominal aortic dissection by ultrasound images.

Emergency radiology
PURPOSE: Acute abdominal aortic dissection (AD) is a serious disease. Early detection based on ultrasound (US) can improve the prognosis of AD, especially in emergency settings. We explored the ability of deep learning (DL) to diagnose abdominal AD i...

Relationship between lifestyle factors and cardiovascular disease prevalence in Somaliland: A supervised machine learning approach using data from Hargeisa Group Hospital, 2024.

Current problems in cardiology
BACKGROUND: Cardiovascular diseases (CVDs) are leading contributors to global morbidity and mortality, with low- and middle-income countries experiencing disproportionately high burdens. In Somaliland, urbanization and lifestyle transitions have incr...

Artificial intelligence and employee outcomes: Investigating the role of job insecurity and technostress in the hospitality industry.

Acta psychologica
Drawing on self-determination theory (SDT), this research examines how the utilization of artificial intelligence (AI) in hospitality organizations is influencing employee work and career outcomes (well-being and career success). We explore the under...

Using natural language processing to identify emergency department patients with incidental lung nodules requiring follow-up.

Academic emergency medicine : official journal of the Society for Academic Emergency Medicine
OBJECTIVES: For emergency department (ED) patients, lung cancer may be detected early through incidental lung nodules (ILNs) discovered on chest CTs. However, there are significant errors in the communication and follow-up of incidental findings on E...