AI Medical Compendium Topic:
Middle Aged

Clear Filters Showing 501 to 510 of 13636 articles

T-cell receptor dynamics in digestive system cancers: a multi-layer machine learning approach for tumor diagnosis and staging.

Frontiers in immunology
BACKGROUND: T-cell receptor (TCR) repertoires provide insights into tumor immunology, yet their variations across digestive system cancers are not well understood. Characterizing TCR differences between colorectal cancer (CRC) and gastric cancer (GC)...

A study on innovation resistance of artificial intelligence voice assistants based on privacy infringement and risk perception.

PloS one
As a vital tool for human-computer interaction, artificial intelligence (AI) voice assistants have become an integral part of individuals' everyday routines. However, there are still a series of problems caused by privacy violations in current use. T...

Machine learning algorithms for diabetic kidney disease risk predictive model of Chinese patients with type 2 diabetes mellitus.

Renal failure
BACKGROUND: Diabetic kidney disease (DKD) is a common and serious complication of diabetic mellitus (DM). More sensitive methods for early DKD prediction are urgently needed. This study aimed to set up DKD risk prediction models based on machine lear...

Risk prediction for acute kidney disease and adverse outcomes in patients with chronic obstructive pulmonary disease: an interpretable machine learning approach.

Renal failure
BACKGROUND: Little is known about acute kidney injury (AKI) and acute kidney disease (AKD) in patients with chronic obstructive pulmonary disease (COPD) and COPD mortality based on the acute/subacute renal injury. This study develops machine learning...

Pseudotargeted metabolomics profiles potential damage-associated molecular patterns as machine learning predictors for acute pancreatitis.

Journal of pharmaceutical and biomedical analysis
Acute pancreatitis (AP) is a common gastrointestinal disease characterized by pancreatic cell damage and inflammation. Given the early clinical diagnosis and management challenges, exploring novel analytical frameworks from new orientations for inter...

Integrating large language models with human expertise for disease detection in electronic health records.

Computers in biology and medicine
OBJECTIVE: Electronic health records (EHR) are widely available to complement administrative data-based disease surveillance and healthcare performance evaluation. Defining conditions from EHR is labour-intensive and requires extensive manual labelli...

Prediction of new-onset migraine using clinical-genotypic data from the HUNT Study: a machine learning analysis.

The journal of headache and pain
BACKGROUND: Migraine is associated with a range of symptoms and comorbid disorders and has a strong genetic basis, but the currently identified risk loci only explain a small portion of the heritability, often termed the "missing heritability". We ai...

Assessment of the long RR intervals using convolutional neural networks in single-lead long-term Holter electrocardiogram recordings.

Scientific reports
Advancements in medical technology have extended long-term electrocardiogram (ECG) monitoring from the traditional 24 h to 7-14 days, significantly enriching ECG data. However, this poses unprecedented challenges for physicians in analyzing these ext...

Validation of body composition parameters extracted via deep learning-based segmentation from routine computed tomographies.

Scientific reports
Sarcopenia and body composition metrics are strongly associated with patient outcomes. In this study, we developed and validated a flexible, open-access pipeline integrating available deep learning-based segmentation models with pre- and postprocessi...