AI Medical Compendium Topic:
Middle Aged

Clear Filters Showing 691 to 700 of 14015 articles

Leveraging machine learning for duration of surgery prediction in knee and hip arthroplasty - a development and validation study.

BMC medical informatics and decision making
BACKGROUND: Duration of surgery (DOS) varies substantially for patients with hip and knee arthroplasty (HA/KA) and is a major risk factor for adverse events. We therefore aimed (1) to identify whether machine learning can predict DOS in HA/KA patient...

An interpretable machine learning model with demographic variables and dietary patterns for ASCVD identification: from U.S. NHANES 1999-2018.

BMC medical informatics and decision making
Current research on the association between demographic variables and dietary patterns with atherosclerotic cardiovascular disease (ASCVD) is limited in breadth and depth. This study aimed to construct a machine learning (ML) algorithm that can accur...

Utilization of non-invasive ventilation before prehospital emergency anesthesia in trauma - a cohort analysis with machine learning.

Scandinavian journal of trauma, resuscitation and emergency medicine
BACKGROUND: For preoxygenation, German guidelines consider non-invasive ventilation (NIV) as a possible method in prehospital trauma care in the absence of aspiration, severe head or face injuries, unconsciousness, or patient non-compliance. As data ...

The role of senescence-related genes in major depressive disorder: insights from machine learning and single cell analysis.

BMC psychiatry
BACKGROUND: Evidence indicates that patients with Major Depressive Disorder (MDD) exhibit a senescence phenotype or an increased susceptibility to premature senescence. However, the relationship between senescence-related genes (SRGs) and MDD remains...

Explainable machine learning model for predicting acute pancreatitis mortality in the intensive care unit.

BMC gastroenterology
BACKGROUND: Current prediction models are suboptimal for determining mortality risk in patients with acute pancreatitis (AP); this might be improved by using a machine learning (ML) model. In this study, we aimed to construct an explainable ML model ...

Integrating radiomics into predictive models for low nuclear grade DCIS using machine learning.

Scientific reports
Predicting low nuclear grade DCIS before surgery can improve treatment choices and patient care, thereby reducing unnecessary treatment. Due to the high heterogeneity of DCIS and the limitations of biopsies in fully characterizing tumors, current dia...

MRI radiomics based on machine learning in high-grade gliomas as a promising tool for prediction of CD44 expression and overall survival.

Scientific reports
We aimed to predict CD44 expression and assess its prognostic significance in patients with high-grade gliomas (HGG) using non-invasive radiomics models based on machine learning. Enhanced magnetic resonance imaging, along with the corresponding gene...

Modifying the severity and appearance of psoriasis using deep learning to simulate anticipated improvements during treatment.

Scientific reports
A neural network was trained to generate synthetic images of severe and moderate psoriatic plaques, after being trained on 375 photographs of patients with psoriasis taken in a clinical setting. A latent w-space vector was identified that allowed the...

Machine learning identifies clinical tumor mutation landscape pathways of resistance to checkpoint inhibitor therapy in NSCLC.

Journal for immunotherapy of cancer
BACKGROUND: Immune checkpoint inhibitors (CPIs) have revolutionized cancer therapy for several tumor indications. However, a substantial fraction of patients treated with CPIs derive no benefit or have short-lived responses to CPI therapy. Identifyin...