AIMC Topic: Multiomics

Clear Filters Showing 201 to 210 of 237 articles

Multi-Omics Integration With Machine Learning Identified Early Diabetic Retinopathy, Diabetic Macula Edema and Anti-VEGF Treatment Response.

Translational vision science & technology
PURPOSE: Identify optimal metabolic features and pathways across diabetic retinopathy (DR) stages, develop risk models to differentiate diabetic macular edema (DME), and predict anti-vascular endothelial growth factor (anti-VEGF) therapy response.

Artificial Intelligence-Driven Precision Medicine: Multi-Omics and Spatial Multi-Omics Approaches in Diffuse Large B-Cell Lymphoma (DLBCL).

Frontiers in bioscience (Landmark edition)
In this comprehensive review, we delve into the transformative role of artificial intelligence (AI) in refining the application of multi-omics and spatial multi-omics within the realm of diffuse large B-cell lymphoma (DLBCL) research. We scrutinized ...

Inferring tumor purity using multi-omics data based on a uniform machine learning framework MoTP.

Briefings in bioinformatics
Existing algorithms for assessing tumor purity are limited to a single omics data, such as gene expression, somatic copy number variations, somatic mutations, and DNA methylation. Here we proposed the machine learning Multi-omics Tumor Purity predict...

Multi-view multi-level contrastive graph convolutional network for cancer subtyping on multi-omics data.

Briefings in bioinformatics
Cancer is a highly diverse group of diseases, and each type of cancer can be further divided into various subtypes according to specific characteristics, cellular origins, and molecular markers. Subtyping helps in tailoring treatment and prognosis ac...

Inferring the genetic relationships between unsupervised deep learning-derived imaging phenotypes and glioblastoma through multi-omics approaches.

Briefings in bioinformatics
This study aimed to investigate the genetic association between glioblastoma (GBM) and unsupervised deep learning-derived imaging phenotypes (UDIPs). We employed a combination of genome-wide association study (GWAS) data, single-nucleus RNA sequencin...

FunlncModel: integrating multi-omic features from upstream and downstream regulatory networks into a machine learning framework to identify functional lncRNAs.

Briefings in bioinformatics
Accumulating evidence indicates that long noncoding RNAs (lncRNAs) play important roles in molecular and cellular biology. Although many algorithms have been developed to reveal their associations with complex diseases by using downstream targets, th...

Machine learning-based clustering identifies obesity subgroups with differential multi-omics profiles and metabolic patterns.

Obesity (Silver Spring, Md.)
OBJECTIVE: Individuals living with obesity are differentially susceptible to cardiometabolic diseases. We hypothesized that an integrative multi-omics approach might improve identification of subgroups of individuals with obesity who have distinct ca...

A comprehensive review of machine learning techniques for multi-omics data integration: challenges and applications in precision oncology.

Briefings in functional genomics
Multi-omics data play a crucial role in precision medicine, mainly to understand the diverse biological interaction between different omics. Machine learning approaches have been extensively employed in this context over the years. This review aims t...

Model ensembling as a tool to form interpretable multi-omic predictors of cancer pharmacosensitivity.

Briefings in bioinformatics
Stratification of patients diagnosed with cancer has become a major goal in personalized oncology. One important aspect is the accurate prediction of the response to various drugs. It is expected that the molecular characteristics of the cancer cells...

MultiSC: a deep learning pipeline for analyzing multiomics single-cell data.

Briefings in bioinformatics
Single-cell technologies enable researchers to investigate cell functions at an individual cell level and study cellular processes with higher resolution. Several multi-omics single-cell sequencing techniques have been developed to explore various as...