BACKGROUND: Breast cancer, a heterogeneous malignancy, comprises multiple subtypes and poses a substantial threat to women's health globally. Neoadjuvant therapy (NAT), administered prior to surgery, is integral to breast cancer treatment strategies....
BACKGROUND: Accurate prediction of pathologic complete response (pCR) following neoadjuvant immunotherapy combined with chemotherapy (nICT) is crucial for tailoring patient care in esophageal squamous cell carcinoma (ESCC). This study aimed to develo...
RATIONALE: Neoadjuvant chemotherapy (NAC) is a key element of treatment for locally advanced breast cancer (LABC). Predicting the response of NAC for patients with LABC before initiating treatment would be valuable to customize therapies and ensure t...
No studies have examined the prognostic value of the log odds of negative lymph nodes/T stage (LONT) in locally advanced rectal cancer (LARC) treated with neoadjuvant chemoradiotherapy (nCRT). We aimed to assess the prognostic value of LONT and devel...
OBJECTIVE: The aim of this study was to develop and validate a deep learning radiomics (DLR) model based on longitudinal ultrasound data and clinical features to predict pathologic complete response (pCR) after neoadjuvant chemotherapy (NAC) in breas...
Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB)
Feb 12, 2025
PURPOSE: The aim of this work is to compare different machine learning models for predicting pathological complete response (pCR) to neoadjuvant chemotherapy (NAC) in breast cancer using radiomics features from dynamic contrast-enhanced magnetic reso...
Journal of cancer research and clinical oncology
Feb 9, 2025
INTRODUCTION: For patients with breast cancer, the amplification of Human Epidermal Growth Factor 2 (HER2) is closely related to their prognosis and treatment decisions. This study aimed to further improve the accuracy and efficiency of HER2 amplific...
PURPOSE: To investigate the feasibility of characterizing tumor heterogeneity in breast cancer ultrasound images using habitat analysis technology and establish a radiomics machine learning model for predicting response to neoadjuvant chemotherapy (N...
PURPOSE: Build machine learning (ML) models able to predict pathological complete response (pCR) after neoadjuvant chemotherapy (NAC) in breast cancer (BC) patients based on conventional and radiomic signatures extracted from baseline [F]FDG PET/CT.
Neoadjuvant chemotherapy (NAC) is a systemic and systematic chemotherapy regimen for breast cancer patients before surgery. However, NAC is not effective for everyone, and the process is excruciating. Therefore, accurate early prediction of the effic...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.