AIMC Topic: Nomograms

Clear Filters Showing 81 to 90 of 374 articles

Development of a LASSO machine learning algorithm-based model for postoperative delirium prediction in hepatectomy patients.

BMC surgery
OBJECTIVE: The objective of this study was to develop and validate a clinically applicable nomogram for predicting the risk of delirium following hepatectomy.

A radiomics and deep learning nomogram developed and validated for predicting no-collapse survival in patients with osteonecrosis after multiple drilling.

BMC medical informatics and decision making
PURPOSE: Identifying patients who may benefit from multiple drilling are crucial. Hence, the purpose of the study is to utilize radiomics and deep learning for predicting no-collapse survival in patients with femoral head osteonecrosis.

Deep Learning Radiomics Nomogram Based on MRI for Differentiating between Borderline Ovarian Tumors and Stage I Ovarian Cancer: A Multicenter Study.

Academic radiology
RATIONALE AND OBJECTIVES: To develop and validate a deep learning radiomics nomogram (DLRN) based on T2-weighted MRI to distinguish between borderline ovarian tumors (BOTs) and stage I epithelial ovarian cancer (EOC) preoperatively.

Risk prediction model of cognitive performance in older people with cardiovascular diseases: a study of the National Health and Nutrition Examination Survey database.

Frontiers in public health
BACKGROUND AND AIM: Changes in cognitive function are commonly associated with aging in patients with cardiovascular diseases. The objective of this research was to construct and validate a nomogram-based predictive model for the identification of co...

Machine learning Nomogram for Predicting endometrial lesions after tamoxifen therapy in breast Cancer patients.

Scientific reports
Objective Endometrial lesions are a frequent complication following breast cancer, and current diagnostic tools have limitations. This study aims to develop a machine learning-based nomogram model for predicting the early detection of endometrial les...

Development and validation of a support vector machine-based nomogram for diagnosis of obstetric antiphospholipid syndrome.

Clinica chimica acta; international journal of clinical chemistry
BACKGROUND: Antiphospholipid Syndrome (APS) is a systemic autoimmune disorder characterized by arterial or venous thrombosis and/or pregnancy complications. This study aims to develop a diagnostic model for Obstetric APS (OAPS) using the Support Vect...

Explainable PET-Based Habitat and Peritumoral Machine Learning Model for Predicting Progression-free Survival in Clinical Stage IA Pure-Solid Non-small Cell Lung Cancer: A Two-center Study.

Academic radiology
RATIONALE AND OBJECTIVES: This study aimed to develop and validate machine learning (ML) models utilizing positron emission tomography (PET)-habitat of the tumor and its peritumoral microenvironment to predict progression-free survival (PFS) in patie...

Development and validation of a new nomogram for self-reported OA based on machine learning: a cross-sectional study.

Scientific reports
Developing a new diagnostic prediction model for osteoarthritis (OA) to assess the likelihood of individuals developing OA is crucial for the timely identification of potential populations of OA. This allows for further diagnosis and intervention, wh...

Noninvasive diagnosis of significant liver fibrosis in patients with chronic hepatitis B using nomogram and machine learning models.

Scientific reports
This study aims to construct and validate noninvasive diagnosis models for evaluating significant liver fibrosis in patients with chronic hepatitis B (CHB). A cohort of 259 CHB patients were selected as research subjects. Through random grouping, 182...

Identification of common diagnostic genes and molecular pathways in endometriosis and systemic lupus erythematosus by machine learning approach and in vitro experiment.

International journal of medical sciences
Growing research suggests that endometriosis and systemic lupus erythematosus (SLE) are both chronic inflammatory diseases and closely related, but no studies have explored their common molecular characteristics and underlying mechanisms. Based on GE...