AIMC Topic: Obesity

Clear Filters Showing 51 to 60 of 233 articles

Reduced response to regadenoson with increased weight: An artificial intelligence-based quantitative myocardial perfusion study.

Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance
BACKGROUND: There is conflicting evidence regarding the response to a fixed dose of regadenoson in patients with high body weight. The aim of this study was to evaluate the effectiveness of regadenoson in patients with varying body weights using nove...

Machine-Learning-Guided Peptide Drug Discovery: Development of GLP-1 Receptor Agonists with Improved Drug Properties.

Journal of medicinal chemistry
Peptide-based drug discovery has surged with the development of peptide hormone-derived analogs for the treatment of diabetes and obesity. Machine learning (ML)-enabled quantitative structure-activity relationship (QSAR) approaches have shown great p...

Neural network model for prediction of possible sarcopenic obesity using Korean national fitness award data (2010-2023).

Scientific reports
Sarcopenic obesity (SO) is characterized by concomitant sarcopenia and obesity and presents a high risk of disability, morbidity, and mortality among older adults. However, predictions based on sequential neural network SO studies and the relationshi...

Application of a transparent artificial intelligence algorithm for US adults in the obese category of weight.

PloS one
OBJECTIVE AND AIMS: Identification of associations between the obese category of weight in the general US population will continue to advance our understanding of the condition and allow clinicians, providers, communities, families, and individuals m...

Does machine learning have a high performance to predict obesity among adults and older adults? A systematic review and meta-analysis.

Nutrition, metabolism, and cardiovascular diseases : NMCD
AIM: Machine learning may be a tool with the potential for obesity prediction. This study aims to review the literature on the performance of machine learning models in predicting obesity and to quantify the pooled results through a meta-analysis.

Effectiveness of an Artificial Intelligence-Assisted App for Improving Eating Behaviors: Mixed Methods Evaluation.

Journal of medical Internet research
BACKGROUND: A plethora of weight management apps are available, but many individuals, especially those living with overweight and obesity, still struggle to achieve adequate weight loss. An emerging area in weight management is the support for one's ...

Exploring the intersection of obesity and gender in COVID-19 outcomes in hospitalized Mexican patients: a comparative analysis of risk profiles using unsupervised machine learning.

Frontiers in public health
INTRODUCTION: Obesity and gender play a critical role in shaping the outcomes of COVID-19 disease. These two factors have a dynamic relationship with each other, as well as other risk factors, which hinders interpretation of how they influence severi...

ChatGPT/GPT-4 (large language models): Opportunities and challenges of perspective in bariatric healthcare professionals.

Obesity reviews : an official journal of the International Association for the Study of Obesity
ChatGPT/GPT-4 is a conversational large language model (LLM) based on artificial intelligence (AI). The potential application of LLM as a virtual assistant for bariatric healthcare professionals in education and practice may be promising if relevant ...

Impact of COVID-19 on arthritis with generative AI.

International immunopharmacology
OBJECTIVE: The study aims to examine the effects of the COVID-19 pandemic on the prevalence of arthritis in the US using a specific generative AI tool.